a b s t r a c tInhaled aerosol dose models play critical roles in medicine, the regulation of air pollutants and basic research. The models fall into several categories: traditional, computational fluid dynamical (CFD), physiologically based pharmacokinetic (PBPK), empirical, semi-empirical, and "reference". Each type of model has its strengths and weaknesses, so multiple models are commonly used for practical applications. Aerosol dose models combine information on aerosol behavior and the anatomy and physiology of exposed human and laboratory animal subjects. Similar models are used for in-vitro studies. Several notable advances have been made in aerosol dose modeling in the past 80 years. The pioneers include Walter Findeisen, who in 1935 published the first traditional model and established the structure of modern models. His model combined aerosol behavior with simplified respiratory tract structures. Ewald Weibel established morphometric techniques for the lung in 1963 that are still used to develop data for modeling today. Advances in scanning techniques have similarly contributed to the knowledge of respiratory tract structure and its use in aerosol dose modeling. Several scientists and research groups have developed and advanced traditional, CFD, and PBPK models. Current issues under study include understanding individual and species differences; examining localized particle deposition; modeling non-ideal aerosols and nanoparticle behavior; linking the regions of the respiratory tract airways from nasal-oral to alveolar; and developing sophisticated supporting software. Although a complete history of inhaled aerosol dose modeling is far too extensive to cover here, selected highlights are described in this paper.
Summary: Neuronal injury may be dependent upon the gen eration of the free radical nitric oxide (NO) and the subsequent induction of programed cell death (PCD). Although the nature of this injury may be both preventable and reversible, the un derlying mechanisms that mediate PCD are not well under stood. Using the agent nicotinamide as an investigative tool in primary rat hippocampal neurons, the authors examined the ability to modulate two independent components of PCD, namely the degradation of genomic DNA and the early expo sure of membrane phosphatidylserine (PS) residues. Neuronal injury was determined through trypan blue dye exclusion, DNA fragmentation, extemalization of membrane PS residues, cys teine protease activation, and the measurement of intracellular pH (pHJ Exposure to the NO donors SIN-I and NOC-9 (300 f,LmoIlL) alone rapidly increased genomic DNA fragmentation from 20 ± 4% to 71 ± 5% and membrane PS exposure from 14 ± 3% to 76 ± 9% over a 24-hour period. Administration of a Neuronal injury can be initiated by several differ ent stimuli that ultimately lead to either apoptosis or necrosis. Neuronal apoptosis or programed cell death (PCD) is an active, controlled, and deliberate process of cell destruction that is present during cell development and injury (Kerr et aI., 1972). In contrast, neurons that undergo necrosis suffer diffuse organelle damage with
The distribution of perivascular nerve fibers expressing nitric oxide synthase (NOS)-immunoreactivity was examined in Sprague-Dawley and Long-Evans rats using affinity-purified rabbit antisera raised against NOS from rat cerebellum. NOS immunoreactivity was expressed within the endothelium and adventitial nerve fibers in both rat strains. Labeled axons were abundant and dense in the proximal anterior and middle cerebral arteries, but were less numerous in the caudal circle of Willis and in small pial arteries. The sphenopalatine ganglia were the major source of positive fibers in these vessels. Sectioning postganglionic parasympathetic fibers from both sphenopalatine ganglia reduced the density of NOS-immunoreactive (IR) nerve fibers by > 75% in the rostral circle of Willis. Moreover, NOS-IR was present in 70-80% of sphenopalatine ganglion cells. Twenty percent of these neurons also contained vasoactive intestinal polypeptide (VIP)-immunoreactivity. By contrast, the superior cervical ganglia did not contain NOS-IR cells. In the trigeminal ganglion, NO-IR neurons were found chiefly within the ophthalmic division; approximately 10-15% of neurons were positively labeled. Colocalization with calcitonin gene-related peptide (CGRP) was not observed. Sectioning the major trigeminal branch innervating the circle of Willis decreased positive fibers by < or = 25% in the ipsilateral vessels. In the nodose ganglion, 20-30% of neurons contained NOS-immunoreactivity, whereas less than 1% were in the C2 and C3 dorsal root ganglia. Three human circles of Willis obtained at autopsy showed sparse immunoreactive fibers, chiefly within vessels of the posterior circulation. Postmortem delay accounted for some of the reduced density. Our findings indicate that nerve fibers innervating cerebral arteries may serve as a nonendothelial source of the vasodilator nitric oxide (NO). The coexistence of NOS and VIP within sphenopalatine ganglion cells raises the possibility that two vasodilatory agents, one, a highly diffusable short-lived, low-molecular-weight molecule, and the other, a polar 28 amino acid-containing peptide, may serve as coneuromediators within the cerebral circulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.