Structural health monitoring (SHM) has gained considerable attention as a tool for monitoring the health of civil infrastructure. For bridge infrastructure, previous methods have focused on the detection of localized damage through modal parameters extracted from the longitudinal direction of the structure. This paper investigates a new damage detection method based on the change in the first vertical mode extracted from the transverse direction of the bridge. The mode is determined through application of modal curve fitting to frequency response functions (FRFs) that are formed using vertical response data obtained in the direction perpendicular to the bridge’s longitudinal axis. Using this method, both local damage and global damage in the bridge reveal themselves as having a localized effect on the bridge response. Furthermore, damage is revealed in such a way that it enables differentiation of the damage types. To demonstrate the effectiveness of the method, modal parameters were extracted from acceleration data obtained from a finite element model of a full bridge. Analysis of the modal parameters showed that the proposed approach could not only detect both local and global bridge damage, but could also differentiate between damage types using only one mode shape. The proposed method was compared to a previously developed SHM method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.