We investigated the effect of 20-hydroxyeicosatetraenoic acid (20-HETE), an arachidonic acid metabolite of the cytochrome P-450 (cP450) 4A pathway, on human pulmonary arterial tone. 20-HETE elicited a dose-dependent and indomethacin-inhibitable vasodilation of isolated small pulmonary arteries. Whole lung microsomes metabolized [24C]arachidonic acid into 20-HETE and a variety of leukotrienes, epoxyeicosatrienoic acids, and prostanoids. Indomethacin blocked formation of prostanoids without effects on the conversion of arachidonate into 20-HETE, 20-HETE was converted by lung microsomes into prostanoids, raising the possibility that 20-HETE may be metabolized by cyclooxygenase enzymes in vascular tissue to a vasodilatory compound. Western blots probed with a polyclonal antibody to cP450 4A identified a protein of approximately 50 kDa immunologically similar to the cP450 4A in rat liver. We conclude that small arteries from human lungs dilate upon exposure to 20-HETE in a cyclooxygenase-dependent manner and that the proteins and enzymatic activity required to synthesize this product are present in lungs. Our observations suggest that cP450 enzyme products could be endogenous modulators of pulmonary vascular tone.
Pulmonary hypertension (PH) often complicates the course of patients with advanced lung disease, and it is associated with a worse prognosis. Per the recent classification of pulmonary hypertensive disorders, PH due to lung disease is considered as a separate category within a group of disorders that was previously referred to as "secondary" PH. Among the lung diseases associated with PH, the incidence and clinical course of PH is best known for patients with COPD. Per studies in patients with COPD and other lung disorders, it is evident that the pathophysiology and treatment of these disorders is generally distinct from that of pulmonary arterial hypertensive disorders. Changes in the pulmonary vasculature that accompany elevations in pulmonary vascular pressure are generally referred to as pulmonary vascular remodeling. Chronic hypoxia is well known to cause pulmonary vascular remodeling and PH, and it is the major mechanism implicated for the development of PH in patients with lung disease. Other mediators have also been implicated in the pathogenesis of PH in animal models and patients with PH, including patients with pulmonary diseases. General features of pulmonary vascular remodeling are discussed with particular emphasis on those changes that have been described in patients with lung diseases. Recent discoveries in these areas are also reviewed, and findings in pulmonary arterial hypertensive diseases are contrasted with those found in patients with PH due to lung diseases. Some of these discoveries have already led to new treatment strategies for patients with the most severe forms of PH. PH due to lung diseases shares some common pathophysiologic features with pulmonary arterial hypertension. Therefore, it is likely that these discoveries and new treatments will also be extended to benefit patients with PH due to lung disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.