Helicobacter pylori bacteria colonize the human stomach where they stimulate a persistent inflammatory response. H. pylori is considered noninvasive; however, lipopolysaccharide (LPS)-enriched outer membrane vesicles (OMV), continuously shed from the surface of this bacterium, are observed within gastric epithelial cells. The mechanism of vesicle uptake is poorly understood, and this study was undertaken to examine the roles of bacterial VacA cytotoxin and LPS in OMV binding and cholesterol and clathrin-mediated endocytosis in vesicle uptake by gastric epithelial cells. OMV association was examined using a fluorescent membrane dye to label OMV, and a comparison was made between the associations of vesicles from a VacA ؉ strain and OMV from a VacA ؊ isogenic mutant strain. Within 20 min, essentially all associated OMV were intracellular, and vesicle binding appeared to be facilitated by the presence of VacA cytotoxin. Uptake of vesicles from the VacA ؉ strain was inhibited by H. pylori LPS (58% inhibition with 50 g/ml LPS), while uptake of OMV from the VacA ؊ mutant strain was less affected (25% inhibition with 50 g/ml LPS). Vesicle uptake did not require cholesterol. However, uptake of OMV from the VacA ؊ mutant strain was inhibited by a reduction in clathrinmediated endocytosis (42% with 15 g/ml chlorpromazine), while uptake of OMV from the VacA ؉ strain was less affected (25% inhibition with 15 g/ml chlorpromazine). We conclude that VacA toxin enhances the association of H. pylori OMV with cells and that the presence of the toxin may allow vesicles to exploit more than one pathway of internalization.Infection with the gastric pathogen Helicobacter pylori results in chronic gastritis (13) and is associated with increased risk for the development of peptic ulcer disease (35), gastric carcinoma (41, 57), and gastric lymphoma (5, 60). H. pylori persistence, in an environment where peristalsis and sloughing of cells are continually occurring, is mediated by a variety of adhesins present on the bacterial surface (14,21,36,40). However, despite the ability to adhere to the gastric epithelium, the majority of organisms remain unattached to surface cells (32), leading to speculation that lipopolysaccharide (LPS)-enriched outer membrane vesicles (OMV) shed by these bacteria (15,19,26) contribute to H. pylori pathogenesis via the persistent delivery of bacterial virulence factors (including the vacuolating cytotoxin VacA) and antigens to the gastric mucosa (26,27). Observations that H. pylori OMV modulate gastric epithelial cell proliferation (22), induce apoptosis (3), stimulate secretion of the proinflammatory cytokine interleukin-8 (22), increase micronucleus formation (8), and are at the luminal surface (15, 26) and within cells of the gastric epithelium (15) support this hypothesis.OMV shedding by Gram-negative bacteria is well described in the literature (reviewed by Kuehn and Kesty [33]), yet little is known of the mechanisms of vesicle adherence to and internalization within mammalian host cells. The adherence of...
BackgroundAdvanced endometrial cancer often shows resistance to clinical chemotherapy although potencies of anticancer drugs in vitro are promising. The disparity suggests that in vivo microenvironments are not recapitulated by in vitro models used for preclinical testing. However, spheroids replicate some important properties of tumours in vivo. Therefore, for the first time, we compared effects of doxorubicin and cisplatin on 3D multicellular structures and 2D cell monolayers of endometrial cancer cells.Methods3D multicellular structures were generated by culturing cancer cells on non-adherent surfaces; and for comparison cell monolayers were cultured on adherent culture plates. Ishikawa, RL95-2, and KLE cell lines were studied. Morphologies of 3D multicellular structures were examined. After 48 hours treatment with anticancer drugs, apoptosis, proliferation, glucose metabolism and vascular endothelial growth factor (VEGF) were analysed. Immunostaining of PCNA, Glut-1, p-Erk1/2, SOD-1 and p-Akt1/2/3 was also performed.ResultsDistinct 3D multicellular morphologies were formed by three different endometrial cancer cell lines. Doxorubicin induced less apoptosis in 3D multicellular structures of high grade cancer cells (RL95-2 and KLE cell lines) than in cell monolayers. Parallel alterations in Erk1/2 phosphorylation and cell proliferation might suggest they were linked and again doxorubicin had less effect on 3D multicellular structures than cell monolayers. On the other hand, there was no correlation between altered glucose metabolism and proliferation. The responses depended on cancer cell lines and were apparently not mediated by altered Glut-1 levels. The level of SOD-1 was high in 3D cell cultures. The effects on VEGF secretion were various and cancer cell line dependent. Importantly, both doxorubicin and cisplatin had selective paradoxical stimulatory effects on VEGF secretion. The microenvironment within 3D multicellular structures sustained Akt phosphorylation, consistent with it having a role in anchorage-independent pathways.ConclusionsThe cancer cells responded to microenvironments in a distinctive manner. 3D multicellular structures exhibited greater resistance to the agents than 2D monolayers, and the differences between the culture formats were dependent on cancer cell lines. The effects of anticancer drugs on the intracellular mediators were not similar in 3D and 2D cultures. Therefore, using 3D cell models may have a significant impact on conclusions derived from screening drugs for endometrial carcinomas.
Chronic Helicobacter pylori infection is associated with an increased risk of gastric carcinogenesis. These non-invasive bacteria colonize the gastric mucosa and constitutively shed small outer membrane vesicles (OMV). In this study, we investigated the direct effect of H.pylori OMV on cellular events associated with carcinogenesis. We observed increased micronuclei formation in AGS human gastric epithelial cells treated with OMV isolated from a toxigenic H.pylori strain (60190). This effect was absent in OMV from strain 60190v:1 that has a mutant vacA, indicating VacA-dependent micronuclei formation. VacA induces intracellular vacuolation, and reduced acridine orange staining indicated disruption in the integrity of these vacuoles. This was accompanied by an alteration in iron metabolism and glutathione (GSH) loss, suggesting a role for oxidative stress in genomic damage. Increasing intracellular GSH levels with a GSH ester abrogated the VacA-mediated increase in micronuclei formation. In conclusion, OMV-mediated delivery of VacA to the gastric epithelium may constitute a new mechanism for H.pylori-induced gastric carcinogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.