Clathrin-mediated endocytosis (CME) remains robust despite variations in plasma membrane tension. Actin assembly-mediated force generation becomes essential for CME under high membrane tension, but the underlying mechanisms are not understood. We investigated actin network ultrastructure at each stage of CME by super-resolution imaging. Actin and N-WASP spatial organization indicate that polymerization initiates at the base of clathrin-coated pits and that the actin network then grows away from the plasma membrane. Actin network organization is not tightly coupled to endocytic clathrin coat growth and deformation. Membrane tension-dependent changes in actin organization explain this uncoupling. Under elevated membrane tension, CME dynamics slow down and the actin network grows higher, resulting in greater coverage of the clathrin coat. This adaptive mechanism is especially crucial during the initial membrane curvature-generating stages of CME. Our findings reveal that adaptive force generation by the actin network ensures robust CME progression despite changes in plasma membrane tension.Highlights-Clathrin coat surface area and actin ultra-structure adapt to elevated membrane tension.-The actin network is nucleated at the base of the clathrin-coated pit and grows upward.-Actin ultra-structural organization is not tightly coupled to CME progression.-Actin force generation is required earlier in CME progression under elevated membrane tension.SummaryKaplan et al. revealed that actin assembly compensates for changes in plasma membrane tension by an adaptive force generating mechanism to ensure robust endocytosis. Under elevated membrane tension the network grows deeper, even in early endocytic stages, from the base upward.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.