Yeasts from caves have rarely been examined. We examined yeasts collected from bat guano samples from 20 bat-inhabited limestone and volcanic caves located in 11 prefectures in Japan. Of ϳ700 yeast-like colonies, nine Trichosporon species were recovered from 15 caves. Two of these were known species, and the remaining seven are potentially novel species, based on molecular phylogenetic analyses. In addition to Trichosporon species, identifiable strains of eight ascomycetous yeasts and one basidiomycetous yeast were recovered at frequencies of 5 to 35%. Our findings suggest that Trichosporon spp. are the major yeast species in bat guano in Japan and that bat guano is a potentially rich source of previously undescribed yeast species.
With wide application of low-dielectric constant (low-k) dielectric materials in multilevel VLSI circuits, the long-term reliability of such materials is rapidly becoming one of the most critical challenges for technology development. Among all the reliability issues, low4 time dependent dielectric breakdown (TDDB) is commonly considered a crucial problem. In this study, the effect of process variations on chemical-vapor deposited (CVD), carbon doped oxide dielectrics comprised of Si, C, 0, and H (SiCOH) TDDB degradation at the 65nm technology node is investigated. SiCOH TDDB is found to be sensitive to all aspects of integration.Based on extensive experimental data, an electrochemical-reactioninduced, three-step degradation model is proposed to explain the SiCOH dielectric breakdown process. Finally, we demonstrate that with careful process and materials optimization, a superior SiCOH TDDB performance at the 65nm technology node can be achieved for 300" fabrication. The projected lifetime, based on a conservative modeling approach and aggressive test structure is far beyond the most stringent reliability target. [
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.