The new polymer (SEC)-coated CPB circuit effectively attenuated upregulation of proteins compared to the non-coated CPB circuit. These proteins were associated with both proteases/protease inhibitors and platelet degranulation.
Careful technique is required in pacemaker implantation to avoid serious iatrogenic complications. A 70year-old woman on an anticoagulant agent underwent pacemaker implantation. Nine months after implantation, a 35-mm pulsatile mass appeared just near the cranial edge of the generator. An iatrogenic pseudoaneurysm was suspected because ultrasonography showed communication with the blood stream through tiny artery. The resected mass proved to be a pseudoaneurysm. This was a rare case of iatrogenic delayed pseudoaneurysm appearing nine months later. It is essential to keep in mind the risk of pseudoaneurysm after pacemaker implantation, especially when the patient takes anticoagulant agents.
The anti-inflammatory actions of glucosamine (GlcN) on arthritic disorders involve the suppression of inflammatory mediator production from synovial cells. GlcN has also been reported to inhibit the activation of the p38 mitogen-activated protein kinase (MAPK) pathway. The present study aimed to determine the cooperative and anti‑inflammatory actions of functional food materials and evaluated the production of interleukin (IL)‑8 and phosphorylation of p38 MAPK in IL-1β-activated synovial cells, incubated with the combination of GlcN and various functional food materials containing L‑methionine (Met), undenatured type II collagen (UC‑II), chondroitin sulfate (CS), methylsulfonylmethane (MSM) and agaro-oligosaccharide (AO). The results indicated that Met, UC‑II, CS, MSM and AO slightly or moderately suppressed the IL-1β-stimulated IL‑8 production by human synovial MH7A cells. The same compounds further decreased the IL‑8 level lowered by GlcN. Similarly, they slightly suppressed the phosphorylation level of p38 MAPK and further reduced the phosphorylation level lowered by GlcN. These observations suggest a possibility that these functional food materials exert an anti‑inflammatory action (inhibition of IL‑8 production) in combination with GlcN by cooperatively suppressing the p38 MAPK signaling (phosphorylation).
Introduction: Whether hypothermic cardiopulmonary bypass could attenuate both blood coagulation and platelet activation compared to normothermic cardiopulmonary bypass remains elusive. Methods: Biocompatibility of a polymer-coated cardiopulmonary bypass circuit was comparatively assessed by plasma proteomics between juvenile pigs undergoing hypothermic (23°C) cardiopulmonary bypass and those undergoing normothermic (37°C) cardiopulmonary bypass (n = 6, respectively). Plasma samples were taken three times: 5 minutes after initiation of cardiopulmonary bypass (T5, before cooling), just before declamping and rewarming (Tc), and just before termination of cardiopulmonary bypass (Trw, 120 minutes). Proteomic analysis was quantitively performed by isobaric tags for relative and absolute quantification labeling. Thrombin–antithrombin complexes (TAT III) were measured by enzyme immunoassay, and vitamin K–dependent protein C (PROC), β-thromboglobulin (TG), and P-selectin were measured by enzyme-linked immunosorbent assay. Blood gas analyses evaluated oxygenator performance. Results: Hypothermic cardiopulmonary bypass had a significantly higher PaO2 at Tc and lower PaCO2 at Trw than normothermic cardiopulmonary bypass. Two hundred twenty-four proteins were identified with statistical criteria of both protein confidence (>95%) and false discovery rate (<5%). Six of these proteins significantly decreased at Tc than at T5 in hypothermic cardiopulmonary bypass (p = 0.02-0.04), with three related to platelet degranulation. Protein C decreased at Trw compared with T5 in normothermic cardiopulmonary bypass (p = 0.04). Thrombin–antithrombin complex had a slightly larger increase with normothermic cardiopulmonary bypass at Trw than with hypothermic cardiopulmonary bypass. β-thromboglobulin and P-selectin levels were significantly lower at Trw with hypothermic cardiopulmonary bypass than with normothermic cardiopulmonary bypass (p = 0.04). Conclusion: Hypothermic cardiopulmonary bypass attenuated platelet degranulation/blood coagulation and maintained better oxygenator performance compared to normothermic cardiopulmonary bypass in juvenile pigs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.