A new 4H-SiC Bipolar Junction Transistor with Suppressed Surface Recombination structure: SSR-BJT has been proposed to improve the common emitter current gain which is one of the main issues for 4H-SiC BJTs. A Lightly Doped N-type layer (LDN-layer) between the emitter and base layers, and a High Resistive P-type region (HRP-region) formed between the emitter mesa edge and the base contact region were employed in the SSR-BJT. A fabricated SSR-BJT showed a maximum current gain of 134 at room temperature with a specific on-resistance of 3.2 mΩcm2 and a blocking voltage VCEO of 950 V. The SSR-BJT kept a current gain of 60 at 250°C with a specific on-resistance of 8 mΩcm2. To our knowledge, these current gains are the highest among 4H-SiC BJTs with a blocking voltage VCEO more than about 1000 V which have been ever reported.
Surface passivation of 4H-SiC has been investigated for high current-gain bipolar junction transistors (BJTs). For the characterization of surface passivation, we have introduced the product “sp•Ls” of a surface recombination velocity (sp) and a surface diffusion length (Ls). The sp•Ls value was obtained by analyzing the I-V characteristics of pn diodes. Both BJTs and pn diodes were fabricated with several passivation methods. We have found clear correlation between the sp•Ls value and the current gain of the fabricated BJTs. Optimizing the surface passivation, we realized high performance BJTs with a current gain of 107 and a blocking voltage VCEO of 950 V.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.