We numerically investigated liquid droplet impact behavior onto a dry and flat surface. The numerical method consists of a coupled level set and volume-of-fluid framework, volume/surface integrated average based multimoment method, and a continuum surface force model. The numerical simulation reproduces the experimentally observed droplet behavior quantitatively, in both the spreading and receding phases, only when we use a dynamic contact angle model based on experimental observations. If we use a sensible simplified dynamic contact angle model, the predicted time dependence of droplet behavior is poorly reproduced. The result shows that precise dynamic contact angle modeling plays an important role in the modeling of droplet impact behavior.
In this Letter, we study the splashing behavior of droplets upon impact onto a variety of substrates with different wetting properties, ranging from hydrophilic to superhydrophobic surfaces. In particular, we study the effects of the dynamic contact angle on splashing. The experimental approach uses high-speed imaging and image analysis to recover the apparent contact angle as a function of the spreading speed. Our results show that neither the Capillary number nor the so-called splashing parameter are appropriate to characterize the splashing behavior under these circumstances. However, we show that the maximum dynamic advancing contact angle and the splashing ratio β adequately characterize the splashing behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.