Neurodegenerative tauopathies, including Alzheimer disease, are characterized by abnormal hyperphosphorylation of the microtubule-associated protein Tau. One group of tauopathies, known as frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), is directly associated with mutations of the gene tau. However, it is unknown why mutant Tau is highly phosphorylated in the patient brain. In contrast to in vivo high phosphorylation, FTDP-17 Tau is phosphorylated less than wild-type Tau in vitro. Because phosphorylation is a balance between kinase and phosphatase activities, we investigated dephosphorylation of mutant Tau proteins, P301L and R406W. Tau phosphorylated by Cdk5-p25 was dephosphorylated by protein phosphatases in rat brain extracts. Compared with wildtype Tau, R406W was dephosphorylated faster and P301L slower. The two-dimensional phosphopeptide map analysis suggested that faster dephosphorylation of R406W was due to a lack of phosphorylation at Ser-404, which is relatively resistant to dephosphorylation. We studied the effect of the peptidylprolyl isomerase Pin1 or microtubule binding on dephosphorylation of wild-type Tau, P301L, and R406W in vitro. Pin1 catalyzes the cis/trans isomerization of phospho-Ser/Thr-Pro sequences in a subset of proteins. Dephosphorylation of wildtype Tau was reduced in brain extracts of Pin1-knockout mice, and this reduction was not observed with P301L and R406W. On the other hand, binding to microtubules almost abolished dephosphorylation of wild-type and mutant Tau proteins. These results demonstrate that mutation of Tau and its association with microtubules may change the conformation of Tau, thereby suppressing dephosphorylation and potentially contributing to the etiology of tauopathies.
Although protein kinase Cdk5-p35 is important in many aspects of the development and function of the central nervous system, relatively little is known about its regulation. In the present study, we examined the relationship between the association of this kinase with membranes and its activity in perinatal and adult rat brains. Cdk5-p35 in perinatal brain exhibited higher activity than that found in adult tissue. Gel filtration chromatography revealed that a portion of Cdk5-p35 from fetal brain occurred as a soluble complex, whereas Cdk5-p35 in adult brain occurred predominantly as a membrane-bound complex. Furthermore, soluble Cdk5-p35 in perinatal brain displayed elevated kinase activity, whereas membrane-bound Cdk5-p35 was highly active only in the presence of detergent. This more active soluble form of Cdk5-p35 correlated to a form in which p35 was phosphorylated, whereas the less active membrane-bound form of Cdk5 correlated to the dephosphorylated form of p35, as evidenced by a downward shift in electrophoretic mobility. Cdk5 activity and transition from soluble to membrane-associated compartments could be modulated by conditions that affected the phosphorylation or dephosphorylation of p35. For example, dephosphorylation of p35 in brain extracts was suppressed by selective inhibition of protein phosphatase-1. Together, these results suggest that the kinase activity of Cdk5-p35 is regulated through its association with membranes, which in turn is under the control of Cdk5-dependent phosphorylation and protein phosphatase-1-dependent dephosphorylation of p35.
The face of a subject who had been using cosmeceuticals for four years and eight months was photographed in ultraviolet light and RGB color. These images, including those taken before the use of the cosmetics, were subjected to deep learning using a neural network model referred to as pix2pix. It was demonstrated that it is possible to predict the effect of the cosmeceutical on the skin and generate images for new subjects using a trained neural network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.