Smooth brome and Kentucky bluegrass are introduced cool-season perennial grasses known to invade grasslands throughout North America. During the fall of 2005 and spring of 2006, we implemented a restoration study at six native prairie sites in eastern South Dakota that have been invaded by smooth brome and Kentucky bluegrass. Treatments included five herbicide combinations, a fall prescribed burn, and an untreated control to determine the potential of each for renovation of invaded native grasslands. Herbicide treatments tested were sulfosulfuron, imazapyr, imazapic + sulfosulfuron, and imazapyr + imazapic, and were applied in late September 2005 and mid-May 2006. Untreated control plots averaged 64% (± 3.1) smooth brome cover and 38% (± 5.5) Kentucky bluegrass cover after the third growing season. Smooth brome cover in herbicide treated plots ranged from 6 to 23% and Kentucky bluegrass cover ranged from 15 to 35% after the third growing season. Smooth brome cover was 20% (± 2.9) and Kentucky bluegrass cover was 19% (± 4.0) in burned plots after the third growing season. Spring and fall treatments had similar native plant cover after three growing seasons. Spring and fall application of 0.33 kg ai ha−1 imazapyr and 0.10 kg ai ha−1 imazapic + 0.16 kg ai ha−1 imazapyr had ≤ 10% smooth brome cover and increased native species cover after three growing seasons. Herbicides were effective at reducing cover of smooth brome and Kentucky bluegrass, and can be incorporated with other management strategies to restore prairie remnants.
Population status and habitat use of yellow rails (Coturnicops noveboracensis), Nelson's sparrows (Ammodramus nelsoni), and Le Conte's sparrows (A. leconteii) are poorly known, so standardized surveys of these species are needed to inform conservation planning and management. A protocol for monitoring secretive marsh birds exists; however, these species regularly call at night and may be missed during early morning surveys. We tested the effectiveness of autonomous recording units (hereafter, recording units) to survey these species by analyzing recorded vocalizations using bioacoustics software. We deployed 22 recording units at 54 sites in northern Minnesota and eastern North Dakota, USA, and conducted traditional broadcast surveys during May-June, 2010 and 2011. We compared detection probabilities between recording units and standard monitoring protocols using robust-design occupancy models. On average, recording units detected 0.59 (SE ¼ 0.11) fewer Le Conte's sparrows, 0.76 (SE ¼ 0.15) fewer Nelson's sparrows, and 1.01 (SE ¼ 0.14) fewer yellow rails per survey than were detected using the standard protocol. Detection probabilities using the standard protocol averaged 0.95 (yellow rail; 95% CI ¼ 0.86-0.98), 0.93 (Le Conte's sparrow; 95% CI ¼ 0.78-0.98), and 0.89 (Nelson's sparrow; 95% CI ¼ 0.56-0.98), but averaged 0.71 (yellow rail; 95% CI ¼ 0.56-0.83), 0.61 (Le Conte's sparrow; 95% CI ¼ 0.42-0.78), and 0.51 (Nelson's sparrow; 95% CI ¼ 0.19-0.82) using recording units. Reduced detection by recording units was likely due to the ability of human listeners to identify birds calling at greater distances. Recording units may be effective for surveying nocturnal secretive marsh birds if investigators correct for differential detectability. Reduced detectability may be outweighed by the increased spatial and temporal coverage feasible with recording units. Ó 2015 The Wildlife Society.
Greater sage-grouse Centrocercus urophasianus populations in North Dakota declined approximately 67% between 1965 and 2003, and the species is listed as a Priority Level 1 Species of Special Concern by the North Dakota Game and Fish Department. The habitat and ecology of the species at the eastern edge of its historical range is largely unknown. We investigated nest site selection by greater sage-grouse and nest survival in North Dakota during 2005 -2006. Sage-grouse selected nest sites in sagebrush Artemisia spp. with more total vegetative cover, greater sagebrush density, and greater 1-m visual obstruction from the nest than at random sites. Height of grass and shrub (sagebrush) at nest sites were shorter than at random sites, because areas where sagebrush was common were sites in low seral condition or dense clay or clay-pan soils with low productivity. Constant survival estimates of incubated nests were 33% in 2005 and 30% in 2006. Variables that described the resource selection function for nests were not those that modeled nest survival. Nest survival was positively influenced by percentage of shrub (sagebrush) cover and grass height. Daily nest survival decreased substantially when percentage of shrub cover declined below about 9% and when grass heights were less than about 16 cm. Daily nest survival rates decreased with increased daily precipitation.
Smooth brome (Bromus inermis) is an introduced, cool-season perennial, sod-forming grass that has been shown to invade both native cool-and warm-season grasslands throughout North America. During the fall of 2005 through spring 2007, we implemented a smooth brome removal study at five sites in eastern South Dakota. Sites were selected to represent a range of soil and environmental conditions. Seven fall herbicide treatments, five spring herbicide treatments, an untreated plot that was planted with a native seed mix, and an untreated control that received no herbicide or seed addition were applied at each location in fall 2005/spring 2006 and fall 2006/spring 2007. Based upon first-year results, three fall herbicide treatments and two spring herbicide treatments were added in fall 2006/spring 2007. Sites were seeded with a native plant mix within 2 wk following spring herbicide treatment. Smooth brome cover in untreated plots ranged from 73 to 99% at the conclusion of the study. Smooth brome cover on herbicide-treated plots ranged from 0 to 84% on 2005/2006 plots and 0 to 98% on 2006/2007 plots after three growing seasons. Native plant response varied by site and treatment, possibly due to competition from exotic weeds. Although several herbicides show promise for control of smooth brome, future response of native plants will be important in determining the proper timing and herbicide combination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.