In budding yeast, the Sec6/8p complex is essential for generating cell polarity by specifying vesicle delivery to the bud tip. We show that Sec6/8 homologs are components of a cytosolic, approximately 17S complex in nonpolarized MDCK epithelial cells. Upon initiation of calcium-dependent cell-cell adhesion, approximately 70% of Sec6/8 is rapidly (t(1/2) approximately 3-6 hr) recruited to sites of cell-cell contact. In streptolysin-O-permeabilized MDCK cells, Sec8 antibodies inhibit delivery of LDL receptor to the basal-lateral membrane, but not p75NTR to the apical membrane. These results indicate that lateral membrane recruitment of the Sec6/8 complex is a consequence of cell-cell adhesion and is essential for the biogenesis of epithelial cell surface polarity.
Polarized epithelial cells form barriers that separate biological compartments and regulate homeostasis by controlling ion and solute transport between those compartments. Receptors, ion transporters and channels, signal transduction proteins, and cytoskeletal proteins are organized into functionally and structurally distinct domains of the cell surface, termed apical and basolateral, that face these different compartments. This review is about mechanisms involved in the establishment and maintenance of cell polarity. Previous reports and reviews have adopted a Golgi-centric view of how epithelial cell polarity is established, in which the sorting of apical and basolateral membrane proteins in the Golgi complex is a specialized process in polarized cells, and the generation of cell surface polarity is a direct consequence of this process. Here, we argue that events at the cell surface are fundamental to the generation of cell polarity. We propose that the establishment of structural asymmetry in the plasma membrane is the first, critical event, and subsequently, this asymmetry is reinforced and maintained by delivery of proteins that were constitutively sorted in the Golgi. We propose a hierarchy of stages for establishing cell polarity.
Thyroid hormones require transport across cell membranes to carry out their biological functions. The importance of transport for thyroid hormone signaling was highlighted by the discovery that inactivating mutations in the human monocarboxylate transporter-8 (MCT8) (SLC16A2) cause severe psychomotor retardation due to thyroid hormone deficiency in the central nervous system. It has been reported that Mct8 expression in the mouse brain is restricted to neurons, leading to the model that organic ion transporter polypeptide-14 (OATP14, also known as OATP1C1/SLCO1C1) is the primary thyroid hormone transporter at the blood-brain barrier, whereas MCT8 mediates thyroid hormone uptake into neurons. In contrast to these reports, we report here that in addition to neuronal expression, MCT8 mRNA and protein are expressed in cerebral microvessels in human, mouse, and rat. In addition, OATP14 mRNA and protein are strongly enriched in mouse and rat cerebral microvessels but not in human microvessels. In rat, Mct8 and Oatp14 proteins localize to both the luminal and abluminal microvessel membranes. In human and rodent choroid plexus epithelial cells, MCT8 is concentrated on the epithelial cell apical surface and OATP14 localizes primarily to the basal-lateral surface. Mct8 and Oatp14 expression was also observed in mouse and rat tanycytes, which are thought to form a barrier between hypothalamic blood vessels and brain. These results raise the possibility that reduced thyroid hormone transport across the blood-brain barrier contributes to the neurological deficits observed in affected patients with MCT8 mutations. The high microvessel expression of OATP14 in rodent compared with human brain may contribute to the relatively mild phenotype observed in Mct8-null mice, in contrast to humans lacking functional MCT8.
Sec6/8 (exocyst) complex regulates vesicle delivery and polarized membrane growth in a variety of cells, but mechanisms regulating Sec6/8 localization are unknown. In epithelial cells, Sec6/8 complex is recruited to cell-cell contacts with a mixture of junctional proteins, but then sorts out to the apex of the lateral membrane with components of tight junction and nectin complexes. Sec6/8 complex fractionates in a high molecular mass complex with tight junction proteins and a portion of E-cadherin, and co-immunoprecipitates with cell surface-labeled E-cadherin and nectin-2α. Recruitment of Sec6/8 complex to cell-cell contacts can be achieved in fibroblasts when E-cadherin and nectin-2α are co-expressed. These results support a model in which localized recruitment of Sec6/8 complex to the plasma membrane by specific cell-cell adhesion complexes defines a site for vesicle delivery and polarized membrane growth during development of epithelial cell polarity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.