The terminal step in cytokinesis, called abscission, requires resolution of the membrane connection between two prospective daughter cells. Our previous studies demonstrated that the coiled-coil protein centriolin localized to the midbody during cytokinesis and was required for abscission. Here we show that centriolin interacts with proteins of vesicle-targeting exocyst complexes and vesicle-fusion SNARE complexes. These complexes require centriolin for localization to a unique midbody-ring structure, and disruption of either complex inhibits abscission. Exocyst disruption induces accumulation of v-SNARE-containing vesicles at the midbody ring. In control cells, these v-SNARE vesicles colocalize with a GFP-tagged secreted polypeptide. The vesicles move to the midbody ring asymmetrically from one prospective daughter cell; the GFP signal is rapidly lost, suggesting membrane fusion; and subsequently the cell cleaves at the site of vesicle delivery/fusion. We propose that centriolin anchors protein complexes required for vesicle targeting and fusion and integrates membrane-vesicle fusion with abscission.
In budding yeast, the Sec6/8p complex is essential for generating cell polarity by specifying vesicle delivery to the bud tip. We show that Sec6/8 homologs are components of a cytosolic, approximately 17S complex in nonpolarized MDCK epithelial cells. Upon initiation of calcium-dependent cell-cell adhesion, approximately 70% of Sec6/8 is rapidly (t(1/2) approximately 3-6 hr) recruited to sites of cell-cell contact. In streptolysin-O-permeabilized MDCK cells, Sec8 antibodies inhibit delivery of LDL receptor to the basal-lateral membrane, but not p75NTR to the apical membrane. These results indicate that lateral membrane recruitment of the Sec6/8 complex is a consequence of cell-cell adhesion and is essential for the biogenesis of epithelial cell surface polarity.
Cell-cell communication is essential for the development and homeostasis of multicellular organisms. Recently, a new type of cell-cell communication was discovered that is based on the formation of thin membranous nanotubes between remote cells. These long membrane tethers, termed tunneling nanotubes (TNTs), form an intercellular conduit and have been shown to enable the transport of various cellular components and signals. However, the molecular basis for TNT formation remains to be elucidated. Here we report that a mammalian protein, M-Sec, induces de novo formation of numerous membrane protrusions extending from the plasma membrane, some of which tether onto adjacent cells and subsequently form TNT-like structures. Depletion of M-Sec by RNA interference (RNAi) greatly reduced endogenous TNT formation as well as intercellular propagation of a calcium flux in a macrophage cell line. Furthermore, blockage of the interaction of M-Sec with Ral and the exocyst complex, which serves as a downstream effector of Ral, attenuated the formation of membrane nanotubes. Our results reveal that M-Sec functions as a key regulator of membrane nanotube formation through interaction with the Ral-exocyst pathway.
The monomeric RalGTPases, RalA and RalB are recognized as components of a regulatory framework supporting tumorigenic transformation. Specifically, RalB is required to suppress apoptotic checkpoint activation, the mechanistic basis of which is unknown. Reported effector proteins of RalB include the Sec5 component of the exocyst, an octameric protein complex implicated in tethering of vesicles to membranes. Surprisingly, we find that the RalB/Sec5 effector complex directly recruits and activates the atypical IkappaB kinase family member TBK1. In cancer cells, constitutive engagement of this pathway, via chronic RalB activation, restricts initiation of apoptotic programs typically engaged in the context of oncogenic stress. Although dispensable for survival in a nontumorigenic context, this pathway helps mount an innate immune response to virus exposure. These observations define the mechanistic contribution of RalGTPases to cancer cell survival and reveal the RalB/Sec5 effector complex as a component of TBK1-dependent innate immune signaling.
Polarized epithelial cells form barriers that separate biological compartments and regulate homeostasis by controlling ion and solute transport between those compartments. Receptors, ion transporters and channels, signal transduction proteins, and cytoskeletal proteins are organized into functionally and structurally distinct domains of the cell surface, termed apical and basolateral, that face these different compartments. This review is about mechanisms involved in the establishment and maintenance of cell polarity. Previous reports and reviews have adopted a Golgi-centric view of how epithelial cell polarity is established, in which the sorting of apical and basolateral membrane proteins in the Golgi complex is a specialized process in polarized cells, and the generation of cell surface polarity is a direct consequence of this process. Here, we argue that events at the cell surface are fundamental to the generation of cell polarity. We propose that the establishment of structural asymmetry in the plasma membrane is the first, critical event, and subsequently, this asymmetry is reinforced and maintained by delivery of proteins that were constitutively sorted in the Golgi. We propose a hierarchy of stages for establishing cell polarity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.