We present a simple theoretical model of transverse mode instability in high-power rare-earth doped fiber amplifiers. The model shows that efficient power transfer between the fundamental and higher-order modes of the fiber can be induced by a nonlinear interaction mediated through the thermo-optic effect, leading to transverse mode instability. The temporal and spectral characteristics of the instability dynamics are investigated, and it is shown that the instability can be seeded by both quantum noise and signal intensity noise, while pure phase noise of the signal does not induce instability. It is also shown that the presence of a small harmonic amplitude modulation of the signal can lead to generation of higher harmonics in the output intensity when operating near the instability threshold.
This paper deals with degradation mechanisms of Ni-YSZ electrodes for solid oxide cells, mainly solid oxide electrolysis cells (SOECs), but also to some extent solid oxide fuel cells (SOFCs). Analysis of literature data reveals that several apparently different and even in one case apparently contradicting degradation phenomena are a consequence of interplay between loss of contact between the Ni-YSZ (and Ni-Ni particles) in the active fine-structured composite fuel electrode layer and migration of Ni via weakly oxidized Ni hydroxide species. A hypothesis that unravels the apparent contradiction and explains qualitatively the phenomena is presented, and as a side effect, light has been shed on a degradation phenomenon in solid oxide fuel cells (SOFCs) that has been observed during a decade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.