A space vehicle which undergoes the atmospheric re-entry or a planetary entry needs the heat shield system to protect inner equipments against severe aerodynamic heating environments. Charring ablator is usually used for the heat shield system. In order to design the heat shield system, it is necessary to predict the thermal behavior under aerodynamic heating by ablation analysis. A computer code for charring ablation and thermal response analysis is newly developed for simulation of one-dimensional transient thermal behavior of charring ablation materials. The mathematical model for the charring ablation including basic equation and computational method of ablation analysis is briefly described. A new ultra light weight phenolic carbon ablator called LATS (Lightweight Ablator series for Transfer vehicle) was recently developed. Arc-heated tests of the LATS ablator were carried out and measured results of the temperature response and surface mass loss are compared with the simulation results of the ablation analysis program. The agreement between the results of simulation and measurement is found to be good. It is also found that the mathematical model used in the ablation code can be applied to the ablation analysis of the low density LATS ablator.
The effects of heat load, ablator density, and backup structure, etc. upon the heat shield performance of the lightweight phenolic carbon ablators named LATS were investigated using a one-dimensional ablation analysis code. The ablator density was assumed to be from about 260 to 1000kg/m 3 . Heat flux time histories of a rectangular pattern were assumed, where cases of constant heating duration time and constant accumulated heat load (up to 600MJ/m 2 ) were considered. The heating level was assumed to be from 1 to 10MW/m 2 , which means that the ablator surface is in the region of diffusion control oxidation/sublimation. The materials of the backup wall are assumed to be aluminum, stainless steel and high density CFRP. Main findings are: (1) For a low heat flux q with the same heating duration time tq, the necessary thickness, with which the maximum back surface temperature equals to the pre-determined allowable temperature, is nearly constant as the density v changes. On the other hand, the necessary thickness increases largely when q is larger and v is smaller. The ablator necessary mass increases with the increase of v and q for the same tq.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.