The feasibility of using a motion sensor to replace a conventional electrolarynx (EL) user interface was explored. A mobile phone motion sensor with multi-agent platform was used to investigate on/off and pitch frequency control capability. A very small battery operated ARM-based control unit was also developed to evaluate the motion sensor based user-interface. The control unit was placed on the wrist and the vibration device was placed against the throat using support bandage. Two different conversion methods were used for the forearm tilt angle to pitch frequency conversion: linear mapping method and F0 template-based method. A perceptual evaluation was performed with two well-trained normal speakers and ten subjects. The results of the evaluation study showed that both methods were able to produce better speech quality in terms of naturalness.
Connected and autonomous vehicles have been significantly studied. They are connected to a network and communicate by exchanging information with each other, so they can detect blind spots that cannot be recognized by non-connected (conventional) vehicles. Therefore, they are expected to contribute to traffic efficiency and safety. However, even if connected vehicles are put to practical use in the future, it will take time to spread to the market, so it is considered that connected vehicles and non-connected vehicles will be mixed on the road. We proposed a method of enabling connected vehicles to share the information gathered from their sensors on surrounding vehicles near intersection in the mixed situation. We then examined the safety and efficiency of passing through an intersection through simulation. We found that efficiency improved and safety could be ensured compared to using conventional methods such as stopping before the intersection without using communication and using traffic lights. INDEX TERMS Connected vehicle, cooperative autonomous driving, V2V communication, mixed traffic.
Persons who have undergone a laryngectomy have a few options to partially restore speech but no completely satisfactory device. Even though the use of an electrolarynx (EL) is the easiest way for a patient to produce speech, it does not produce a natural tone and appearance is far from normal. Because of that and the fact that none of them are hands-free, the feasibility of using a motion sensor to replace a conventional EL user interface has been explored. A mobile device motion sensor with multi-agent platform has been used to investigate on/off and pitch frequency control capability. A very small battery operated ARM-based control unit has also been developed to evaluate the motion sensor based user-interface. This control unit is placed on the wrist and the vibration device against the throat using support bandage. Two different conversion methods were used for the forearm tilt angle to pitch frequency conversion: linear mapping method and F0 template-based method A perceptual evaluation has been performed with two well-trained normal speakers and ten subjects. The results of the evaluation study showed that both methods are able to produce better speech quality in terms of the naturalness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.