Biotic interactions affect species distributions, and environmental factors that influence these interactions can play a key role when range shifts in response to environmental change are modelled. In a field experiment using enclosures, we studied the effects of the thermal habitat on intra‐ versus inter‐specific competition of juvenile Dolly Varden Salvelinus malma and white‐spotted charr Salvelinus leucomaenis, as measured by differences in specific growth rates during summer in allopatric and sympatric treatments. Previous laboratory experiments have shown mixed results regarding the importance of temperature‐dependent competitive abilities as a main driver for spatial segregation in stream fishes, and no study so far has confirmed its existence in natural streams. Under natural conditions in areas where the two species occur in sympatry, Dolly Varden dominate spring‐fed tributaries (cold, stable thermal regime), whereas both species often coexist in non‐spring‐fed tributaries (warm, unstable thermal regime). Enclosures (charr density = 6 per m2) were placed in non‐spring‐fed (10–14°C) and spring‐fed (7–8°C) tributaries. In enclosures placed in non‐spring‐fed tributaries, Dolly Varden grew 0.81% per day in allopatry and had negative growth (−0.33% per day) in sympatry, whereas growth rates were similar in allopatry and sympatry in spring‐fed tributaries (0.68 and 0.58% per day). White‐spotted charr grew better in sympatry than in allopatry in both thermal habitats. In non‐spring‐fed tributaries, they grew 0.17 and 0.79% per day and in spring‐fed tributaries 0.46 and 0.75% per day in allopatry and sympatry, respectively. The negative effect of inter‐specific competition from white‐spotted charr on Dolly Varden thus depended on the thermal habitat. However, there was no strong evidence of a temperature‐dependent effect of intra‐ and inter‐specific competition on white‐spotted charr growth. Multiple factors may shape species distribution patterns, and we show that temperature may mediate competitive outcomes and thus coexistence in stream fish. These effects of temperature will be important to incorporate into mechanistic and dynamic species distribution models.
Bovine leukemia virus (BLV) infection in cattle causes persistent lymphocytosis, and a few percent of infected animals develop lymphoid tumors, namely enzootic bovine leukosis (EBL). In this study, a 440-bp fragment of the env gene was amplified from 204 tumor samples collected from different regions of Japan and analyzed by restriction fragment length polymorphism (RFLP) to determine the association of BLV with EBL. Of the seven RFLP types defined, types I, II, and III were dominant and found in 12.7, 75.0, and 8.3% of tumor samples, respectively. Cattle harboring type III virus were significantly older than other animals at the time of diagnosis of EBL. Type III viruses were found in approximately 33% and 5.5% of Japanese Black and Holstein cattle, respectively, with EBL. These findings indicate that genetically distinct BLV was associated with EBL in Japan and that the genetic profile may influence the leukemogenicity of the virus.
Removal of dissolved oxygen from algal photobioreactors is essential for high productivity in mass cultivation. Gas-permeating photobioreactor that uses hydrophobic membranes to permeate dissolved oxygen (pervaporation) from its body itself is an energy-efficient option for oxygen removal. This study comparably evaluated the characteristics of various commercial membranes and determined the criteria for the selection of suitable ones for the gas-permeating photobioreactors. It was found that oxygen permeability is limited not by that in the membrane but in the liquid boundary layer. Membrane thickness had a negative effect on membrane oxygen permeability, but the effect was as minor as less than 3% compared with the liquid boundary layer. Due to this characteristic, the lamination of non-woven fabric with the microporous film did not significantly decrease the overall oxygen transfer coefficient. The permeability in the liquid boundary layer had a significantly positive relationship with the hydrophobicity. The highest overall oxygen transfer coefficients in the water-to-air and water-to-water oxygen removal tests were 2.1 ± 0.03 × 10 −5 and 1.39 ± 0.09 × 10 −5 m s −1 , respectively. These values were considered effective in the dissolved oxygen removal from high-density algal culture to prevent oxygen inhibition. Furthermore, hydrophobicity was found to have a significant relationship also with water entry pressure, which needs to be high to avoid culture liquid leakage. Therefore, these results suggested that a microporous membrane with strong hydrophobicity laminated with non-woven fabric would be suitable characteristics for gas-permeating photobioreactor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.