The Sherman-Morrison formula is one scheme for computing the approximate inverse preconditioner of a large linear system of equations. However, parallelizing a preconditioning approach is not straightforward as it is necessary to include a sequential process in the matrix factorization. In this paper, we propose a formula that improves the performance of the Sherman-Morrison preconditioner by partially parallelizing the matrix factorization. This study shows that our parallel technique implemented on a PC cluster system of eight processing elements significantly reduces the computational time for the matrix factorization compared with the time taken by a single processor. Our study has also verified that the Sherman-Morrison preconditioner performs better than ILU or MR preconditioners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.