Although research on the inference phase of edge artificial intelligence (AI) has made considerable improvement, the required training phase remains an unsolved problem. Neural network (NN) processing has two phases: inference and training. In the training phase, a NN incurs high calculation cost. The number of bits (bitwidth) in the training phase is several orders of magnitude larger than that in the inference phase. Training algorithms, optimized to software, are not appropriate for training hardware-oriented NNs. Therefore, we propose a new training algorithm for edge AI: backpropagation (BP) using a ternarized gradient. This ternarized backpropagation (TBP) provides a balance between calculation cost and performance. Empirical results demonstrate that in a two-class classification task, TBP works well in practice and compares favorably with 16-bit BP (Fixed-BP).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.