Moiré superlattices are emerging as a new route for engineering strongly correlated electronic states in two-dimensional van der Waals heterostructures, as recently demonstrated in the correlated insulating and superconducting states in magic-angle twisted bilayer graphene and ABC trilayer graphene/boron nitride moiré superlattices 1-4 . Transition metal dichalcogenide (TMDC) moiré heterostructures provide another exciting model system to explore correlated quantum phenomena 5 , with the addition of strong light-matter interactions and large spin-orbital coupling. Here we report the optical detection of strongly correlated phases in semiconducting WSe2/WS2 moiré superlattices. Our sensitive optical detection technique reveals a Mott insulator state at one hole per superlattice site (ν = 1), and surprising insulating phases at fractional filling factors ν = 1/3 and 2/3, which we assign to generalized Wigner crystallization on an underlying lattice 6-9 . Furthermore, the unique spin-valley optical selection rules 10-12 of TMDC heterostructures allow us to optically create and investigate low-energy spin excited states in the Mott insulator. We reveal an especially slow spin relaxation lifetime of many microseconds in the Mott insulating state, orders-of-magnitude longer than that of charge excitations. Our studies highlight novel correlated physics that can emerge in moiré superlattices beyond graphene.
& These authors contributed equally to this work 2 ABSTRACT.The appearance of single photon sources in atomically thin semiconductors holds great promises for the development of a flexible and ultra-compact quantum technology, in which elastic strain engineering can be used to tailor their emission properties. Here, we show a compact and hybrid 2D-semiconductorpiezoelectric device that allows for controlling the energy of single photons emitted by quantum emitters localized in wrinkled WSe2 monolayers. We demonstrate that strain fields exerted by the piezoelectric device can be used to tune the energy of localized excitons in WSe2 up to 18 meV in a reversible manner, while leaving the single photon purity unaffected over a wide range. Interestingly, we find that the magnitude and in particular the sign of the energy shift as a function of stress is emitter dependent. With the help of finite element simulations we suggest a simple model that explains our experimental observations and, furthermore, discloses that the type of strain (tensile or compressive) experienced by the quantum emitters strongly depends on their localization across the wrinkles. Our findings are of strong relevance for the practical implementation of single photon devices based on two-dimensional materials as well as for understanding the effects of strain on their emission properties. KEYWORDS: single photon emitters, 2D materials, elastic strain engineering, photoluminescence, tungsten diselenide monolayers, piezoelectric devices
MAIN TEXTThe family of two-dimensional (2D) semiconductor transition metal dichalcogenides (TMDs), including WS2, WSe2, MoS2 or MoSe2, offers several advantages for optoelectronic and photonic applications. They possess a variety of properties such as direct bandgap when thinned down to the monolayer, quantum confinement due to their reduced out-of-plane dimensionality, large oscillator strength and quantum efficiency, optically controlled injection of electrons with defined spins for quantum spintronics and spinphoton interfacing 1,2 . Moreover, functional multilayer heterostructures can be easily built up by simply
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.