The thermodynamics of small-molecule (H(2), arene, alkane, and CO) addition to pincer-ligated iridium complexes of several different configurations (three-coordinate d(8), four-coordinate d(8), and five-coordinate d(6)) have been investigated by computational and experimental means. The substituent para to the iridium (Y) has been varied in complexes containing the (Y-PCP)Ir unit (Y-PCP = eta(3)-1,3,5-C(6)H(2)[CH(2)PR(2)](2)Y; R = methyl for computations; R = tert-butyl for experiments); substituent effects have been studied for the addition of H(2), C-H, and CO to the complexes (Y-PCP)Ir, (Y-PCP)Ir(CO), and (Y-PCP)Ir(H)(2). Para substituents on arenes undergoing C-H bond addition to (PCP)Ir or to (PCP)Ir(CO) have also been varied computationally and experimentally. In general, increasing electron donation by the substituent Y in the 16-electron complexes, (Y-PCP)Ir(CO) or (Y-PCP)Ir(H)(2), disfavors addition of H-H or C-H bonds, in contradiction to the idea of such additions being oxidative. Addition of CO to the same 16-electron complexes is also disfavored by increased electron donation from Y. By contrast, addition of H-H and C-H bonds or CO to the three-coordinate parent species (Y-PCP)Ir is favored by increased electron donation. In general, the effects of varying Y are markedly similar for H(2), C-H, and CO addition. The trends can be fully rationalized in terms of simple molecular orbital interactions but not in terms of concepts related to oxidation, such as charge-transfer or electronegativity differences.
The mechanism of (PCP)Ir-catalyzed transfer-dehydrogenation has been elucidated for the prototypical substrate/acceptor couple, COA/TBE, at 55 degrees C (COA = cyclooctane; TBE = tert-butylethylene). The catalytic cycle may be viewed as the sum of two reactions: (i) hydrogenation of TBE by (PCP)IrH2 and C-H addition of a second mole of TBE to give (PCP)IrH(tert-butylvinyl), and (ii) dehydrogenation of COA by (PCP)IrH(tert-butylvinyl) to give (PCP)IrH2, COE, and TBE. These two stoichiometric reactions have been observed independently and their kinetics determined. The overall catalysis has also been monitored in situ, and (PCP)IrH2 and (PCP)IrH(tert-butylvinyl) have been observed as the resting states; the ratio of these two complexes is found to be proportional to [TBE]2. Based upon the proportionality constant thus obtained and the catalytic rate as a function of [TBE] (which reaches a maximum at ca. 0.3 M), the respective rate constants for the hydrogenation and dehydrogenation segments can be obtained. Good agreement is found between the rates independently obtained from stoichiometric and catalytic runs. Within the overall TBE-hydrogenation reaction, labeling experiments indicate that the rate-determining step is the reductive elimination of TBA (2,2-dimethylbutane) from (PCP)IrH(tert-butylethyl) (which is formed via insertion of TBE into an Ir-H bond of (PCP)IrH2). Based upon considerations of microscopic reversibility, it can be further inferred that the rate-determining step for the alkane dehydrogenations is C-H addition (and not beta-H elimination).
1J(H-D), T(1min) and k(1) for H(2) dissociation from OsHX(H(2))(CO)L(2) have been measured for X = Cl, I, H (L = P(t-Bu)(2)Me or P(i-Pr)(3)), as well as for OsCl(2)(H(2))(CO)(P(i-Pr)(3))(2). For comparison, new data (including previously unobserved coupling constants) have been reported for W(HD)(CO)(3)(P(i-Pr)(3))(2). A comprehensive consideration of T(1min) data for over 20 dihydrogen complexes containing only 1-2 phosphines cis to H(2), together with a consideration of the shortest "conceivable" H-H distance for H(2) bound to a d(4) or d(6) metal, is used to argue that the "fast spinning" model is not appropriate for determining r(H-H) in such complexes. Regarding OsHX(H(2))(CO)L(2), the stronger electron-donor (lighter) halide, when cis to H(2), facilitates loss of H(2). The complete absence of pi-donor ability when X = H renders H(2) loss most difficult. However, a pi-donor trans to H(2) also makes H(2) loss unobservable. Within the series of isoelectronic, structurally analogous Os complexes, a longer H-H bond shows a larger DeltaG() for H(2) loss. However, this correlation does not continue to W(H(2))(CO)(3)(P(i-Pr)(3))(2), which has r(H-H) comparable to that of OsH(halide)(H(2))(CO)(P(i-Pr)(3))(2), but a significantly higher DeltaG(). This may originate from lack of a pi-donor ligand to compensate as H(2) leaves W.
Quantum calculations with the density functional theory (B3LYP) have been carried out to compare the reactivity of aryl-H and aryl-F bonds toward oxidative addition and to understand the high degree of inertness of the latter. The thermodynamic energy patterns for oxidative addition of 1,4-difluorobenzene toward two very different metal fragments have been examined. In one of them the final product of oxidative addition could be a 16-electron unsaturated complex of the type Os(H)(CO)(C 6 F 2 H 3 )(PH 3 ) 2 and/or Os(F)(CO)(C 6 FH 4 )-(PH 3 ) 2 . In the other system the final product of oxidative addition could be an 18-electron saturated complex CpRh(PH 3 )(H)(C 6 F 2 H 3 ) or CpRh(PH 3 )(F)(C 6 FH 4 ). These two systems are models for experimental complexes which prefer the C-H to the C-F oxidative addition. The calculations reveal that, for both systems, the C-F oxidative addition is thermodynamically preferred, especially in the 16-electron case. The activation energy has been determined in the case of Rh, and it is shown that the activation energy for C-F activation is considerably higher than that for C-H activation. This clearly shows that the inertness of the C-F bond has a kinetic origin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.