Hypophosphatasia is an inborn error of metabolism characterized by deficient activity of the tissue-nonspecific isoenzyme of alkaline phosphatase (TNSALP) and skeletal disease due to impaired mineralization of cartilage and bone matrix. We investigated two independently generated TNSALP gene knock-out mouse strains as potential models for hypophosphatasia. Homozygous mice (-/-) had < 1% of wild-type plasma TNSALP activity; heterozygotes had the predicted mean of ∼50%. Phosphoethanolamine, inorganic pyrophosphate, and pyridoxal 5-phosphate are putative natural substrates for TNSALP and all were increased endogenously in the knock-out mice. Skeletal disease first appeared radiographically at ∼10 days of age and featured worsening rachitic changes, osteopenia, and fracture. Histologic studies revealed developmental arrest of chondrocyte differentiation in epiphyses and in growth plates with diminished or absent hypertrophic zones. Progressive osteoidosis from defective skeletal matrix mineralization was noted but not associated with features of secondary hyperparathyroidism. Plasma and urine calcium and phosphate levels were unremarkable. Our findings demonstrate that TNSALP knock-out mice are a good model for the infantile form of hypophosphatasia and provide compelling evidence for an important role for TNSALP in postnatal development and mineralization of the murine skeleton. (J Bone Miner
Hypophosphatasia is a heritable form of rickets/osteomalacia with extremely variable clinical expression.Severe forms are inherited in an autosomal recessive fashion; the mode of transmission of mild forms is uncertain. The biochemical hallmark of hypophosphatasia is deficient activity of the tissue-nonspecific isozyme of alkaline phosphatase (TNSALP). Previously, we demonstrated in one inbred infant that an identical missense mutation in both alleles of the gene encoding TNSALP caused lethal disease. We have now examined TNSALP cDNAs from four unrelated patients with the severe perinatal or infantile forms of hypophosphatasia. Each of the eight TNSALP alleles from these four individuals contains a different point mutation that causes an amino acid substitution. These base changes were not detected in at least 63 normal individuals and, thus, appear to be causes of hypophosphatasia in the four patients. (Two additional base substitutions, found in one allele from each of the four patients, are linked polymorphisms.) Twenty-three unrelated patients (of 50 screened), who reflect the entire clinical spectrum of hypophosphatasia, possess one of four of the above eight mutations. In two of these additional patients, mild forms ofthe disease are also inherited in an autosomal recessive fashion. Our findings indicate that hypophosphatasia can be caused by a number of different missense mutations and that the specific interactions of different TNSALP mutant alleles are probably important for determining clinical expression. Severe forms, perinatal and infantile disease, are largely the result of compound heterozygosity for different hypophosphatasia alleles. At least some cases of childhood and adult hypophosphatasia are inherited as autosomal recessive traits.
IntroductionHypophosphatasia features selective deficiency of activity of the tissue-nonspecific (liver/bone/kidney) alkaline phosphatase (ALP) To test whether human PALP and TNSALP are physiologically active toward the same substrates, we studied PEA, PPi, and PLP levels during and after pregnancy in three women who are carriers for hypophosphatasia. Hypophosphatasemia corrected during the third trimester because of PALP in maternal blood. Blood or urine concentrations of PEA, PPi, and PLP diminished substantially during that time. After childbirth, maternal circulating levels of PALP decreased, and PEA, PPi, and PLP levels abruptly increased. In serum, unremarkable concentrations of IALP and low levels of TNSALP did not change during the study period.We conclude that PALP, like TNSALP, is physiologically active toward PEA, PPi, and PLP in humans. We speculate from molecular/crystallographic information, indicating significant similarity of structure of the substrate-binding site of ALPs throughout nature, that all ALP isoenzymes recognize these same three phosphocompound substrates.
Abstract"Perinatal" hypophosphatasia is the most severe form of this inborn error of metabolism, which is characterized by deficient activity of the tissue-nonspecific (liver/bone/kidney) isoenzyme of alkaline phosphatase (ALP) (TNSALP). We report that autopsy tissue from three affected subjects, which was profoundly low in ALP activity, had essentially unremarkable levels of pyridoxal-5'-phosphate (PLP), pyridoxal, and total vitamin B6 content despite markedly elevated plasma PLP levels (5,800, 14,500, and 98,500 nM; adult norm, 5-109 nM).Our findings help to explain the general absence of symptoms of vitamin B6 excess or deficiency in hypophosphatasia, and provide evidence that TNSALP acts as an ectoenzyme to regulate extracellular rather than intracellular concentrations of PLP (the cofactor form of vitamin B6) and perhaps other phosphate compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.