Hypophosphatasia is an inborn error of metabolism characterized by deficient activity of the tissue-nonspecific isoenzyme of alkaline phosphatase (TNSALP) and skeletal disease due to impaired mineralization of cartilage and bone matrix. We investigated two independently generated TNSALP gene knock-out mouse strains as potential models for hypophosphatasia. Homozygous mice (-/-) had < 1% of wild-type plasma TNSALP activity; heterozygotes had the predicted mean of ∼50%. Phosphoethanolamine, inorganic pyrophosphate, and pyridoxal 5-phosphate are putative natural substrates for TNSALP and all were increased endogenously in the knock-out mice. Skeletal disease first appeared radiographically at ∼10 days of age and featured worsening rachitic changes, osteopenia, and fracture. Histologic studies revealed developmental arrest of chondrocyte differentiation in epiphyses and in growth plates with diminished or absent hypertrophic zones. Progressive osteoidosis from defective skeletal matrix mineralization was noted but not associated with features of secondary hyperparathyroidism. Plasma and urine calcium and phosphate levels were unremarkable. Our findings demonstrate that TNSALP knock-out mice are a good model for the infantile form of hypophosphatasia and provide compelling evidence for an important role for TNSALP in postnatal development and mineralization of the murine skeleton. (J Bone Miner
and IRF-1 ؉/؉ mice. Importantly, we show that dsRNA-or dsRNA ؉ IFN-␥-stimulated IRF-1 expression by mouse islets and peritoneal macrophages is independent of PKR. These results indicate that IRF-1 is required for dsRNA ؉ IFN-␥-induced iNOS expression and nitric oxide production by mouse peritoneal macrophages but not by mouse islets. These findings suggest that dsRNA ؉ IFN-␥ stimulates iNOS expression by two distinct PKR-independent mechanisms; one that is IRF-1-dependent in macrophages and another that is IRF-1-independent in islets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.