BackgroundThe gut–liver axis plays a crucial role in various liver diseases. Therefore, targeting this crosstalk may provide a new treatment strategy for liver diseases. However, the exact mechanism underlying this crosstalk and its impact on drug-induced liver injury (DILI) requires clarification.AimThis study aimed to investigate the potential mechanism and therapeutic effect of MgIG on MTX-induced liver injury, which is associated with the gut–liver axis and gut microbiota.MethodsAn MTX-induced liver injury model was generated after 20-mg/kg/3d MTX application for 30 days. Meanwhile, the treatment group was treated with 40-mg/kg MgIG daily. Histological examination, aminotransferase, and aspartate aminotransferase enzyme levels were estimated to evaluate liver function. Immune cells infiltration and inflammatory cytokines were detected to indicate inflammation levels. Colon histological score, intestinal barrier leakage, and expression of tight junctions were employed to assess the intestinal injury. Bacterial translocation was observed using fluorescent in situ hybridisation, colony-forming unit counting, and lipopolysaccharide detection. Alterations in gut microbial composition were analysed using 16s rDNA sequencing and relative quantitative polymerase chain reaction. Short-chain-fatty-acids and lactic acid concentrations were then utilized to validate changes in metabolites of specific bacteria. Lactobacillus sp. supplement and fecal microbiota transplantation were used to evaluate gut microbiota contribution.ResultsMTX-induced intestinal and liver injuries were significantly alleviated using MgIG treatment. Bacterial translocation resulting from the intestinal barrier disruption was considered a crucial cause of MTX-induced liver injury and the therapeutic target of MgIG. Moreover, MgIG was speculated to have changed the gut microbial composition by up-regulating probiotic Lactobacillus and down-regulating Muribaculaceae, thereby remodelling the intestinal barrier and inhibiting bacterial translocation.ConclusionThe MTX-induced intestinal barrier was protected owing to MgIG administration, which reshaped the gut microbial composition and inhibited bacterial translocation into the liver, thus attenuating MTX-related DILI.
Summary In this study, the effects of viscosity-reducer (VR) concentration, salinity, water/oil ratio (WOR), and temperature on the performance of emulsions are examined on the basis of the selected VR. Different VR-injection scenarios, including single-VR injection and coinjection of steam and VR, are conducted after steamflooding by use of single-sandpack models. The results show that high VR concentration, high WOR, and low salinity are beneficial to form stable oil/water emulsions. The oil recoveries of steamflooding for bitumen and heavy oil are approximately 31 and 52%, respectively. The subsequent VR flooding gives an incremental oil recovery of 5.2 and 6.4% for bitumen and heavy oil, respectively. Flooding by steam/VR induces an additional oil recovery of 8.4–11.0% for bitumen and 12.1% for heavy oil. High-temperature steam favors the peeling off of oil and improving its fluidity, as well as the in-situ emulsions. VR solution is beneficial for the oil dispersion and further viscosity reduction. The coinjection of high-temperature steam and VR is much more effective for additional oil production in viscous-oil reservoirs.
The further integration of information technology and subject teaching is the megatrends of teaching reform nowadays. With the help of information technology, teachers, learners and teaching environment have been effectively integrated; the enthusiasm of teachers and students in learning has been greatly improved. However, the actual effect of foreign language learning has not been substantially improved. Instead, they have become optional outside the classroom. How to use the existing equipment and resources to build a personalized learning environment acceptable to learners and can improve the results of learning is a problem that our English teachers should consider. In view of the rationality of constructivism and contextual cognitive theory in supporting individualized classroom learning, combining with the above theory, based on MMFU (Multimedia for You), this paper attempts to realize it in classroom learning through the application case analysis of foreign language learning with the method of materialization and humanization.
Steam Assisted Gravity Drainage (SAGD) is widely used as an in-situ technology to recover heavy oil and bitumen. But due to serious heat losses, large energy requirements and enormous CO 2 emissions, pure SAGD may not be sufficiently efficient to allow economical production.The main objective of addition of viscosity reducer is to couple viscosity reduction capability of heat and surfactant. It strengthens the formation of emulsions of O/W type that have much lower viscosity than the oil from which they are formed, and enhances oil production under the same amount of steam to make the thermal process more profitable. With regard to the non-condensable gas, its distribution and movement is essential for the expansion of the steam chamber.In this paper, the performances of a set of selected viscosity reducers under high temperatures are firstly evaluated. Then based on a high temperature and high pressure two-dimension physical model, different injection processes are conducted to study the separate and combined effect of nitrogen and viscosity reducer on the vertical and horizontal expansion rates of steam chamber. The results show that the injection of nitrogen helps the steam chamber expand more quickly in the horizontal direction. And the combination of viscosity reducer and nitrogen makes the steam chamber expand more quickly than the pure SAGD and Nitrogen-SAGD processes. The following sand pack physical models are conducted to further investigate the mechanisms of viscosity reducer and nitrogen in porous media, such as the steam profile correction relying on the blocking capacity of emulsions, heat loss reduction and the combination effect of gas expansion and viscosity reducer on the displacement of residual oil. In addition, numerical simulations are conducted to demonstrate the feasibility of SAGD assisted by viscosity reducer and nitrogen in Du 84 ultra-heavy oil reservoir. Besides optimizing operation parameters, such as nitrogen steam ratio, effective nitrogen injection volume, interval time between viscosity reducer injection and nitrogen injection, the study results show the effect of this technology on the improvement of thermal oil recovery.In summary, this study is beneficial for the application of viscosity reducer and nitrogen in the process of SAGD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.