Attention-deficit/hyperactivity disorder (ADHD) is diagnosed subjectively based on an individual's behaviour and performance. The clinical community has no objective biomarker to inform the diagnosis and subtyping of ADHD.This study aimed to explore the potential diagnostic biomarkers of ADHD among surface values, volumetric metrics and radiomic features that were
The precise classification of incomplete antibody reaction intensity (IARI) in hydrogel chromatography medium high density medium solid-phase Coombs test is essential for haemolytic disease screening. However, an automatic and contactless method is required for accurate classification of IARI. Here, we present a deep ensemble learning model that integrates five different convolutional neural networks into a single model for IARI classification. A dataset, including 1628 IARI images and corresponding labels of IARI categories ((-), (1 +), (2 +), (3 +), and (4 +)), was used. We trained our model using 1302 IARIs and validated its performance using 326 IARIs. The proposed model achieved 100%, 99.4%, 99.4%, 100%, and 100% accuracies in the ( −), (1 +), (2 +), (3 +), and (4 +) categories, respectively. The results were compared with those of manual classification by immunologists (average accuracy: 99.8%
vs.
88.3%,
p
< 0.01). Following model assistance, all three immunologists achieved increased accuracy (average accuracy: + 6.1%), with the average accuracy of junior immunologists maximum increasing by 11.3%. The time required for model classification was 0.094 s·image
–1
, whereas that required manually was 5.528 s·image
–1
. The proposed model can thus substantially improve the accuracy and efficiency of IARI classification and facilitate the automation of haemolytic disease screening equipment.
Graphical abstract
Supplementary Information
The online version contains supplementary material available at 10.1007/s11517-022-02523-1.
The pathological diagnosis of intracranial germinoma (IG), oligodendroglioma, and low‐grade astrocytoma on intraoperative frozen section (IFS) and hematoxylin–eosin (HE)‐staining section directly determines patients' treatment options, but it is a difficult task for pathologists. We aimed to investigate whether whole‐slide imaging (WSI)‐based deep learning can contribute new precision to the diagnosis of IG, oligodendroglioma, and low‐grade astrocytoma. Two types of WSIs (500 IFSs and 832 HE‐staining sections) were collected from 379 patients at multiple medical centers. Patients at Center 1 were split into the training, testing, and internal validation sets (3:1:1), while the other centers were the external validation sets. First, we subdivided WSIs into small tiles and selected tissue tiles using a tissue tile selection model. Then a tile‐level classification model was established, and the majority voting method was used to determine the final diagnoses. Color jitter was applied to the tiles so that the deep learning (DL) models could adapt to the variations in the staining. Last, we investigated the effectiveness of model assistance. The internal validation accuracies of the IFS and HE models were 93.9% and 95.3%, respectively. The external validation accuracies of the IFS and HE models were 82.0% and 76.9%, respectively. Furthermore, the IFS and HE models can predict Ki‐67 positive cell areas with R2 of 0.81 and 0.86, respectively. With model assistance, the IFS and HE diagnosis accuracy of pathologists improved from 54.6%–69.7% and 53.5%–83.7% to 87.9%–93.9% and 86.0%–90.7%, respectively. Both the IFS model and the HE model can differentiate the three tumors, predict the expression of Ki‐67, and improve the diagnostic accuracy of pathologists. The use of our model can assist clinicians in providing patients with optimal and timely treatment options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.