Biodiversity experiments have shown that species loss reduces ecosystem functioning in grassland. To test whether this result can be extrapolated to forests, the main contributors to terrestrial primary productivity, requires large-scale experiments. We manipulated tree species richness by planting more than 150,000 trees in plots with 1 to 16 species. Simulating multiple extinction scenarios, we found that richness strongly increased stand-level productivity. After 8 years, 16-species mixtures had accumulated over twice the amount of carbon found in average monocultures and similar amounts as those of two commercial monocultures. Species richness effects were strongly associated with functional and phylogenetic diversity. A shrub addition treatment reduced tree productivity, but this reduction was smaller at high shrub species richness. Our results encourage multispecies afforestation strategies to restore biodiversity and mitigate climate change.
Summary1. Biodiversity-ecosystem functioning (BEF) experiments address ecosystem-level consequences of species loss by comparing communities of high species richness with communities from which species have been gradually eliminated. BEF experiments originally started with microcosms in the laboratory and with grassland ecosystems. A new frontier in experimental BEF research is manipulating tree diversity in forest ecosystems, compelling researchers to think big and comprehensively. 2. We present and discuss some of the major issues to be considered in the design of BEF experiments with trees and illustrate these with a new forest biodiversity experiment established in subtropical China (Xingangshan, Jiangxi Province) in 2009/2010. Using a pool of 40 tree species, extinction scenarios were simulated with tree richness levels of 1, 2, 4, 8 and 16 species on a total of 566 plots of 25Á8 9 25Á8 m each. 3. The goal of this experiment is to estimate effects of tree and shrub species richness on carbon storage and soil erosion; therefore, the experiment was established on sloped terrain. The following important design choices were made: (i) establishing many small rather than fewer larger plots, (ii) using high planting density and random mixing of species rather than lower planting density and patchwise mixing of species, (iii) establishing a map of the initial 'ecoscape' to characterize site heterogeneity before the onset of biodiversity effects and (iv) manipulating tree species richness not only in random but also in trait-oriented extinction scenarios. 4. Data management and analysis are particularly challenging in BEF experiments with their hierarchical designs nesting individuals within-species populations within plots within-species compositions. Statistical analysis best proceeds by partitioning these random terms into fixed-term contrasts, for example, species composition into contrasts for species richness and the presence of particular functional groups, which can then be tested against the remaining random variation among compositions. 5. We conclude that forest BEF experiments provide exciting and timely research options. They especially require careful thinking to allow multiple disciplines to measure and analyse data jointly and effectively. Achiev- This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. 2014, 5, 74-89 doi: 10.1111/2041-210X.12126 ing specific research goals and synergy with previous experiments involves trade-offs between different designs and requires manifold design decisions. Methods in Ecology andEvolution
(2011). Community assembly during secondary forest succession in a Chinese subtropical forest. Ecological Monographs, 81(1): 25-41. Community assembly during secondary forest succession in a Chinese subtropical forest Abstract Subtropical broad-leaved forests in southeastern China support a high diversity of woody plants. Using a comparative study design with 30330 m plots (n=27) from five successional stages (<20, <40, <60, <80, and ≤80 yr), we investigated how the gradient in species composition reflects underlying processes of community assembly. In particular, we tested whether species richness of adult trees and shrubs decreased or increased and assessed to which degree this pattern was caused by negative density dependence or continuous immigration over time. Furthermore, we tested whether rare species were increasingly enriched and the species composition of adult trees and shrubs became more similar to species composition of seedlings during the course of succession. We counted the individuals of all adult species and shrubs >1 m in height in each plot and counted all woody recruits (bank of all seedlings ≤1 m in height) in each central 10310 m quadrant of each plot. In addition, we measured a number of environmental variables (elevation, slope, aspect, soil moisture, pH, C, N, and C/N ratio) and biotic structural variables (height and cover of layers). Adult species richness varied from 25 to 69 species per plot, and in total 148 woody species from 46 families were recorded. There was a clear successional gradient in species composition as revealed by nonmetric multidimensional scaling (NMDS), but only a poor differentiation of different successional stages with respect to particular species. Adult richness per 100 individuals (rarefaction method) increased with successional stage. None of the measured abiotic variables were significantly correlated with adult species richness. We found no evidence that rare species were responsible for the increasing adult species richness, as richness of rare species among both adults and recruits was independent of the successional stage. Furthermore, the similarity between established adults and recruits did not increase with successional stage. There was a constant number of recruit species and also of exclusive recruit species, i.e., those that had not been present as adult individuals, across all successional stages, suggesting a continuous random immigration over time. variables were significantly correlated with adult species richness. We found no evidence that 41 rare species were responsible for the increasing adult species richness, as richness of rare 42 species amongst both adults and recruits was independent of the successional stage.
Experimental forest plantations to study biodiversity-ecosystem functioning (BEF) relationships have recently been established in different regions of the world, but subtropical biomes have not been covered so far. Here, we report about the initial survivorship of 26 tree species in the first such experiment in subtropical China. In the context of the joint Sino-German-Swiss Research Unit "BEFChina," 271 experimental forest plots were established using 24 naturally occurring tree species and two native commercial conifers. Based on the survival inventories carried out in November 2009 and June 2010, the overall survival rate was 87 % after the first 14 months. Generalized mixed-effects models showed that survival rates of seedlings were significantly affected by species richness, the species' leaf habit (deciduous or evergreen), species identity, planting date, and altitude. In the first survey, seedling establishment success decreased with increasing richness levels, a tendency that disappeared in the second survey after replanting. Though evergreen species performed less well than deciduous species with establishment rates of 84 versus 93 % in the second survey, their planting success exceeded the general expectation for subtropical broad-leaved evergreen species. These results have important implications for establishing mixed-species plantations for diversity conservation and improvement of ecosystem functioning in the Chinese subtropics and elsewhere. Additional costs associated with mixed-species plantations as compared to conventional plantations also demonstrate the potential of upscaling BEF experiments to large-scale afforestation projects. June 2010, the overall survival rate was 87% after the first 14 months. Generalized mixed-effects 22 models showed that survival rates of seedlings were significantly affected by species richness, the 23 species' leaf habit (deciduous or evergreen), species identity, planting date and altitude. In the first 24 survey, seedling establishment success decreased with increasing richness levels, a tendency that 25 disappeared in the second survey after replanting. Deciduous species had a significantly higher survival 26 than evergreen species (93% vs. 84% in the second survey). These results have implications for 27 establishing Though evergreen species performed less well than deciduous species with establishment 28 rates of 84% vs. 93% in the second survey, their planting success exceeded the general expectation for 29 subtropical broad-leave evergreen species. These results have important implications for establishing 30 mixed species plantations for diversity conservation and improvement of ecosystem functioning in the 31Chinese subtropics and elsewhere. Additional costs associated with mixed -species as compared to 32 conventional plantations also demonstrates the potential of upscaling BEF experiments to large-scale 33 afforestation projects. 34 35
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.