The foodborne pathogen Listeria monocytogenes is a highly adaptable organism that can persist in a wide range of environmental and food-related niches. The consumption of contaminated ready-to-eat foods can cause infections, termed listeriosis, in vulnerable humans, particularly those with weakened immune systems. Although these infections are comparatively rare they are associated with high mortality rates and therefore this pathogen has a significant impact on food safety. L. monocytogenes can adapt to and survive a wide range of stress conditions including low pH, low water activity, and low temperature, which makes it problematic for food producers who rely on these stresses for preservation. Stress tolerance in L. monocytogenes can be explained partially by the presence of the general stress response (GSR), a transcriptional response under the control of the alternative sigma factor sigma B (σB) that reconfigures gene transcription to provide homeostatic and protective functions to cope with the stress. Within the host σB also plays a key role in surviving the harsh conditions found in the gastrointestinal tract. As the infection progresses beyond the GI tract L. monocytogenes uses an intracellular infectious cycle to propagate, spread and remain protected from the host’s humoral immunity. Many of the virulence genes that facilitate this infectious cycle are under the control of a master transcriptional regulator called PrfA. In this review we consider the environmental reservoirs that enable L. monocytogenes to gain access to the food chain and discuss the stresses that the pathogen must overcome to survive and grow in these environments. The overlap that exists between stress tolerance and virulence is described. We review the principal measures that are used to control the pathogen and point to exciting new approaches that might provide improved means of control in the future.
Listeria monocytogenes senses blue light via the flavin mononucleotide-containing sensory protein Lmo0799, leading to activation of the general stress response sigma factor SigB ( B ). In this study, we investigated the physiological response of this foodborne pathogen to blue light. We show that blue light (460 to 470 nm) doses of 1.5 to 2 mW cm ؊2 cause inhibition of growth on agar-based and liquid culture media. The inhibitory effects are dependent on cell density, with reduced effects evident when high cell numbers are present. The addition of 20 mM dimethylthiourea, a scavenger of reactive oxygen species, or catalase to the medium reverses the inhibitory effects of blue light, suggesting that growth inhibition is mediated by the formation of reactive oxygen species. A mutant strain lacking B (⌬sigB) was found to be less inhibited by blue light than the wild type, likely indicating the energetic cost of deploying the general stress response. When a lethal dose of light (8 mW cm ؊2 ) was applied to cells, the ⌬sigB mutant displayed a marked increase in sensitivity to light compared to the wild type. To investigate the role of the bluelight sensor Lmo0799, mutants were constructed that either had a deletion of the gene (⌬lmo0799) or alteration in a conserved cysteine residue at position 56, which is predicted to play a pivotal role in the photocycle of the protein (lmo0799 C56A). Both mutants displayed phenotypes similar to the ⌬sigB mutant in the presence of blue light, providing genetic evidence that residue 56 is critical for light sensing in L. monocytogenes. Taken together, these results demonstrate that L. monocytogenes is inhibited by blue light in a manner that depends on reactive oxygen species, and they demonstrate clear light-dependent phenotypes associated with B and the blue-light sensor Lmo0799.
IMPORTANCEListeria monocytogenes is a bacterial foodborne pathogen that can cause life-threatening infections in humans. It is known to be able to sense and respond to visible light. In this study, we examine the effects of blue light on the growth and survival of this pathogen. We show that growth can be inhibited at comparatively low doses of blue light, and that at higher doses, L. monocytogenes cells are killed. We present evidence suggesting that blue light inhibits this organism by causing the production of reactive oxygen species, such as hydrogen peroxide. We help clarify the mechanism of light sensing by constructing a "blind" version of the blue-light sensor protein. Finally, we show that activation of the general stress response by light has a negative effect on growth, probably because cellular resources are diverted into protective mechanisms rather than growth.
The bacterial foodborne pathogen
Listeria monocytogenes
frequently contaminates various categories of food products and is able to cause life-threatening infections when ingested by humans. Thus, it is important to control the growth of this bacterium in food by understanding the mechanisms that allow its proliferation under suboptimal conditions.
Listeria monocytogenes is a food-borne bacterial pathogen capable of causing the life-threatening infection, listeriosis. In seafood the route of contamination from the environment is often not well understood as this pathogen is not generally thought to survive well in seawater. Here we provide evidence that L. monocytogenes is capable of surviving for long periods of time in seawater when light is excluded. Sunlight is demonstrated to have a significant effect on the survival of this pathogen in seawater, and both visible (470 nm) and UV-A light are shown to contribute to this effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.