Engineered glyphosate resistance is the most widely adopted genetically modified trait in agriculture, gaining widespread acceptance by providing a simple robust weed control system. However, extensive and sustained use of glyphosate as a sole weed control mechanism has led to field selection for glyphosate-resistant weeds and has induced significant population shifts to weeds with inherent tolerance to glyphosate. Additional weed control mechanisms that can complement glyphosate-resistant crops are, therefore, urgently needed. 2,4-dichlorophenoxyacetic acid (2,4-D) is an effective lowcost, broad-spectrum herbicide that controls many of the weeds developing resistance to glyphosate. We investigated the substrate preferences of bacterial aryloxyalkanoate dioxygenase enzymes (AADs) that can effectively degrade 2,4-D and have found that some members of this class can act on other widely used herbicides in addition to their activity on 2,4-D. AAD-1 cleaves the aryloxyphenoxypropionate family of grass-active herbicides, and AAD-12 acts on pyridyloxyacetate auxin herbicides such as triclopyr and fluroxypyr. Maize plants transformed with an AAD-1 gene showed robust crop resistance to aryloxyphenoxypropionate herbicides over four generations and were also not injured by 2,4-D applications at any growth stage. Arabidopsis plants expressing AAD-12 were resistant to 2,4-D as well as triclopyr and fluroxypyr, and transgenic soybean plants expressing AAD-12 maintained field resistance to 2,4-D over five generations. These results show that single AAD transgenes can provide simultaneous resistance to a broad repertoire of agronomically important classes of herbicides, including 2,4-D, with utility in both monocot and dicot crops. These transgenes can help preserve the productivity and environmental benefits of herbicide-resistant crops.herbicide resistance | weed management | genetically modified crops |
In higher plants, three subfamilies of sucrose nonfermenting-1 (Snf1)-related protein kinases have evolved. While the Snf1-related protein kinase 1 (SnRK1) subfamily has been shown to share pivotal roles with the orthologous yeast Snf1 and mammalian AMP-activated protein kinase in modulating energy and metabolic homeostasis, the functional significance of the two plant-specific subfamilies SnRK2 and SnRK3 in these critical processes is poorly understood. We show here that SnRK2.6, previously identified as crucial in the control of stomatal aperture by abscisic acid (ABA), has a broad expression pattern and participates in the regulation of plant primary metabolism. Inactivation of this gene reduced oil synthesis in Arabidopsis (Arabidopsis thaliana) seeds, whereas its overexpression increased Suc synthesis and fatty acid desaturation in the leaves. Notably, the metabolic alterations in the SnRK2.6 overexpressors were accompanied by amelioration of those physiological processes that require high levels of carbon and energy input, such as plant growth and seed production. However, the mechanisms underlying these functionalities could not be solely attributed to the role of SnRK2.6 as a positive regulator of ABA signaling, although we demonstrate that this kinase confers ABA hypersensitivity during seedling growth. Collectively, our results suggest that SnRK2.6 mediates hormonal and metabolic regulation of plant growth and development and that, besides the SnRK1 kinases, SnRK2.6 is also implicated in the regulation of metabolic homeostasis in plants.Plants are constantly confronted by biotic and abiotic stresses and nutrient deprivation that disrupt metabolic and energy homeostasis or diminish carbon and energy availability for maintaining cell vitality, growth, and proliferation. It is believed that maintaining energy balance and availability at the cellular and organism levels is critical for optimizing plant growth and development. This underscores the cellular and physiological importance of energy sensors that control energy balance through regulating fundamental metabolic pathways in response to nutritional and environmental stresses.At present, a prevailing view is that energy sensors are evolutionarily conserved in eukaryotes, which are represented by Snf1 (for sucrose nonfermenting-1) in yeast, AMPK (for AMP-activated protein kinase) in
Complete κ-light chain and VH-CH1 (Fd) genes were cloned by PCR from cDNA synthesized from RNA isolated from a picloram (4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid)-specific hybridoma cell line. Both genes were cloned into the phagemid vector pComb3 for expression of soluble Fab. Extracts from the periplasmic space of recombinant Escherichia coli expressing the Fab exhibited specificity to picloram with an IC50 of 50 ng/mL, as determined by competitive indirect ELISA. This value was comparable to that obtained when using the parent monoclonal antibody (IC50 = 20 ng/mL). Two different matrices, river water and soil extract, did not interfere with the sensitivity and specificity of the assay. Cross-reactivity was detected to the pyridine herbicide clopyralid (IC50 > 30 μg/mL) but not to the pyridine herbicides triclopyr and fluoroxypyr. A single-chain variable fragment was constructed with the same variable chain sequences, but no specific activity to picloram was detected. The soluble Fab was found to be a suitable recombinant antibody fragment for the purpose of quantifying picloram in environmental samples. Keywords: Competitive indirect ELISA; monoclonal antibody; recombinant Fab; herbicides; picloram
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.