Metal-organic frameworks (MOFs) have attracted great attention because of their intriguing molecular topologies and potential applications in chemical separation, [1] gas storage, [2] drug delivery, [3] catalysis [4] and chemical sensor technology. [5] Particularly, MOFs could also be potential energetic materials because of their high densities and high heats of detonation. For example, Hope-Weeks and co-workers recently reported two hydrazine-perchlorate 1D MOFs [(Ni(NH 2 NH 2 ) 5 (ClO 4 ) 2 ) n (NHP), and (Co(NH 2 NH 2 ) 5 (ClO 4 ) 2 ) n (CHP)] with linear polymeric structures, [6] which were regarded as possibly the most powerful metal-based energetic materials known to date, with heats of detonation comparable with that of hexanitrohexaazaisowutzitane (CL-20; about 1.5 kcal g À1 ).Unfortunately, these coordination polymers were highly sensitive to impact deriving from their low rigidity characteristic of such linear polymeric structures, which makes practical use infeasible. In order to decrease the sensitivities, the same authors also used a hydrazine derivative (hydrazine-carboxylate) as the ligand to construct MOFs with 2D sheet structures [((
A protocol for optical dating of potassium-rich feldspar (K-feldspar) is proposed. It utilizes the infrared stimulated luminescence (IRSL) signal measured by progressively increasing the stimulation temperature from 50 to 250 °C in step of 50 °C, so-called multi-elevated-temperature post-IR IRSL (MET-pIRIR) measurements. Negligible anomalous fading was observed for the MET-pIRIR
Treatment of 1-amino-1,2,3-triazole with sodium dichloroisocyanurate led to isolation of 1,1'-azobis-1,2,3-triazole, which was well characterized. Its structure was determined by X-ray crystallographic analysis, and its thermal stability and photochromic properties were investigated.
Accurate prediction to the detonation performances of different kinds of energetic materials has attracted significant attention in the area of high energy density materials (HEDMs). A common approach for the estimation of CHNO explosives is the Kamlet-Jacobs (K-J) equation. However, with the development of energetic materials, the components of explosives are no longer restricted to CHNO elements. In this study, we have extended the K-J equation to the calculation of certain metal-containing explosives. A new empirical method, in which metal elements are assumed to form metallic oxides, has been developed on the basis of the largest exothermic principle. In this method, metal oxides can be deemed as inert solids that release heat other than gases. To evaluate the prediction accuracy of new method, a commercial program EXPLO5 has been employed for the calculation. The difference involved in the ways of treating products has been taken into account, and the detonation parameters from two methods were subject to close comparison. The results suggest that the mean absolute values (MAVs) of relative deviation for detonation velocity (D) and detonation pressure (P) are less than 5%. Overall, this new method has exhibited excellent accuracy and simplicity, affording an efficient way to estimate the performance of explosives without relying on sophisticated computer programs. Therefore, it will be helpful in designing and synthesizing new metallic energetic compounds.
Well-preserved loess deposits are found on the foothills of mountains along the middle reaches of the Yarlung Zangbo River in southern Tibet. Optically stimulated luminescence (OSL) dating is used to determine loess ages by applying the single-aliquot regeneration technique. Geochemical, mineralogical, and granulometric measurements were carried out to allow a comparison between loess from Tibet and the Chinese Loess Plateau. Our results demonstrate that (i) the loess deposits have a basal age of 13-11 ka, suggesting they accumulated after the last deglaciation, (ii) loess in southern Tibet has a ''glacial'' origin, resulting from eolian sorting of glaciofluvial outwash deposits from braided river channels or alluvial fans by local near-surface winds, and (iii) the present loess in the interior of Tibet has accumulated since the last deglaciation when increased monsoonal circulation provided an increased vegetation cover that was sufficient for trapping eolian silt. The lack of full-glacial loess is either due to minimal vegetation cover or possibly due to the erosion of loess as glaciofluvial outwash during the beginning of each interglacial. Such processes would have been repeated during each glacial-interglacial cycle of the Quaternary. r
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.