This article examines the effect of soy isolate protein on the serum lipids and other potential cardiovascular risk markers in 90 moderately hypercholesterolemic Chinese adults (64 women and 26 men, aged 25 to 70 years). Fasting blood samples were taken before and after consuming 24 g of protein supplied by soy isolate protein supplement (including 18 g soy protein and 6 g milk protein) or milk protein supplement daily for 8 weeks. Dietary intake was assessed by a 3-day record collected at baseline, week 4, and week 8 of the study. The results indicate that the two kinds of protein can modestly improve serum lipids and markers associated with obesity and inflammation.
BackgroundType 2 diabetes mellitus (T2DM) is a major risk factor for cardiovascular disease, and the prevalence has increased significantly in recent decades to epidemic proportions in China. Individually, fenugreek (Trigonella foenum graecum) seed, mulberry (Morus alba L.) leaf and American ginseng (Panax quinquefolius) root can improve glycemia in various animal models and humans with impaired glucose metabolism and T2DM. The aim of this study was to design an optimized botanical formula containing these herbal extracts as a nutritional strategy for the prevention of insulin resistance and T2DM.MethodsCell-free α-amylase and α-glucosidase enzyme assays were used to determine inhibitory potential of extracts. Glucose uptake was examined in differentiated human adipocytes using radiolabeled 2-deoxyglucose. Male Sprague Dawley rats were divided and glycemia balanced into 5 groups: two controls (naïve and model) and three doses of the botanical test formula containing standardized fenugreek seed, mulberry leaf and American ginseng extracts (42.33, 84.66 and 169.33 mg/kg BW). Insulin resistance and T2DM was induced by feeding animals a high fat diet and with an alloxan injection. Glucose tolerance was examined by measuring serum glucose levels following an oral glucose load.ResultsFenugreek seed and mulberry leaf dose dependently inhibited α-amylase (IC50 = 73.2 μg/mL) and α-glucosidase (IC50 = 111.8 ng/mL), respectively. All three botanical extracts improved insulin sensitivity and glucose uptake in human adipocytes, which lead to the design of an optimized botanical test formula. In a rat model of insulin resistance and T2DM, the optimized botanical test formula improved fasting serum glucose levels, fasting insulin resistance and the development of impaired glucose tolerance. The reduction in epididymal adipose tissue GLUT4 and PDK1 expression induced by high fat diet and alloxan was blunted by the botanical test formula.ConclusionsA novel botanical formula containing standardized extracts of mulberry leaf, fenugreek seed and American ginseng at a ratio of 1:1.3:3.4 prevented the development of insulin resistance, impaired glucose tolerance and T2DM. Given the rising need for effective non-drug targeting of insulin resistance and progression to T2DM, complementary and alternative nutritional strategies without intolerable side effects could have meaningful impact on metabolic health and diabetes risks.
BackgroundDiacylglyceride acyltransferase 1 (DGAT1) is the enzyme that adds the final fatty acid on to a diacylglyceride during triglyceride (TG) synthesis. DGAT1 plays a key role in the repackaging of dietary TG into circulating TG rich chylomicrons. A growing amount of research has indicated that an exaggerated postprandial circulating TG level is a risk indicator for cardiovascular and metabolic disorders. The aim of this research was to identify a botanical extract that inhibits intestinal DGAT1 activity and attenuates postprandial hypertriglyceridemia in overweight and obese humans.MethodsTwenty individual phytochemicals and an internal proprietary botanical extract library were screened with a primary cell-free DGAT1 enzyme assay that contained dioleoyl glycerol and palmitoleoyl Coenzyme A as substrates plus human intestinal microsomes as the DGAT1 enzyme source. Botanical extracts with IC50 values < 100 μg/mL were evaluated in a cellular DGAT1 assay. The cellular DGAT1 assay comprised the analysis of 14C labeled TG synthesis in cells incubated with 14C-glycerol and 0.3 mM oleic acid. Lead botanical extracts were then evaluated in a parallel, double-blind, placebo-controlled clinical trial. Ninety healthy, overweight and obese participants were randomized to receive 2 g daily of placebo or individual botanical extracts (the investigational product) for seven days. Serum TG levels were measured before and after consuming a high fat meal (HFM) challenge (0.354 L drink/shake; 77 g fat, 25 g carbohydrate and 9 g protein) as a marker of intestinal DGAT1 enzyme activity.ResultsPhenolic acids (i.e., gallic acid) and polyphenols (i.e., cyanidin) abundantly found in nature appeared to inhibit DGAT1 enzyme activity in vitro. Four polyphenolic rich botanical extracts were identified from in vitro evaluation in both cell-free and cellular model systems: apple peel extract (APE), grape extract (GE), red raspberry leaf extract (RLE) and apricot/nectarine extract (ANE) (IC50 = 1.4, 5.6, and 10.4 and 3.4 μg/mL, respectively). In the seven day clinical trial, compared to placebo, only GE significantly reduced the baseline subtracted change in serum TG AUC following consumption of the HFM (AUC = 281 ± 37 vs. 181 ± 30 mg/dL*h, respectively; P = 0.021). Chromatographic characterization of the GE revealed a large number of closely eluting components containing proanthocyanidins, catechins, anthocyanins and their secondary metabolites that corresponded with the observed DGAT1 enzyme inhibition in the cell-free model.ConclusionThese data suggest that a dietary GE has the potential to attenuate postprandial hypertriglyceridemia in part by the inhibition of intestinal DGAT1 enzyme activity without intolerable side effects.Trial registrationThis trial was registered with ClinicalTrials.gov NCT02333461Electronic supplementary materialThe online version of this article (doi:10.1186/s12986-015-0025-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.