Tyrosinase is the rate-limiting enzyme of melanin production and, accordingly, is the most prominent target for inhibiting hyperpigmentation. Numerous tyrosinase inhibitors have been identified, but most of those lack clinical efficacy because they were identified using mushroom tyrosinase as the target. Therefore, we used recombinant human tyrosinase to screen a library of 50,000 compounds and compared the active screening hits with well-known whitening ingredients. Hydroquinone and its derivative arbutin only weakly inhibited human tyrosinase with a half-maximal inhibitory concentration (IC) in the millimolar range, and kojic acid showed a weak efficacy (IC > 500 μmol/L). The most potent inhibitors of human tyrosinase identified in this screen were resorcinyl-thiazole derivatives, especially the newly identified Thiamidol (Beiersdorf AG, Hamburg, Germany) (isobutylamido thiazolyl resorcinol), which had an IC of 1.1 μmol/L. In contrast, Thiamidol only weakly inhibited mushroom tyrosinase (IC = 108 μmol/L). In melanocyte cultures, Thiamidol strongly but reversibly inhibited melanin production (IC = 0.9 μmol/L), whereas hydroquinone irreversibly inhibited melanogenesis (IC = 16.3 μmol/L). Clinically, Thiamidol visibly reduced the appearance of age spots within 4 weeks, and after 12 weeks some age spots were indistinguishable from the normal adjacent skin. The full potential of Thiamidol to reduce hyperpigmentation of human skin needs to be explored in future studies.
Background
Solar radiation causes skin damage through the generation of reactive oxygen species (ROS). While UV filters effectively reduce UV‐induced ROS, they cannot prevent VIS‐induced (400‐760 nm) oxidative stress. Therefore, potent antioxidants are needed as additives to sunscreen products.
Methods
We investigated VIS‐induced ROS formation and the photoprotective effects of the Nrf2 inducer Licochalcone A (LicA).
Results
Visible spectrum of 400‐500 nm dose‐dependently induced ROS in cultured human fibroblasts at doses equivalent to 1 hour of sunshine on a sunny summer day (150 J/cm2). A pretreatment for 24 hours with 1 µmol/L LicA reduced ROS formation to the level of unirradiated cells while UV filters alone were ineffective, even at SPF50+. In vivo, topical treatment with a LicA‐containing SPF50 + formulation significantly prevented the depletion of intradermal carotenoids by VIS irradiation while SPF50 + control did not protect.
Conclusion
LicA may be a useful additive antioxidant for sunscreens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.