Equine metabolic syndrome (EMS) is a widely recognized collection of risk factors for endocrinopathic laminitis. The most important of these risk factors is insulin dysregulation (ID). Clinicians and horse owners must recognize the presence of these risk factors so that they can be targeted and controlled to reduce the risk of laminitis attacks. Diagnosis of EMS is based partly on the horse's history and clinical examination findings, and partly on laboratory testing. Several choices of test exist which examine different facets of ID and other related metabolic disturbances. EMS is controlled mainly by dietary strategies and exercise programs that aim to improve insulin regulation and decrease obesity where present. In some cases, pharmacologic aids might be useful. Management of an EMS case is a long‐term strategy requiring diligence and discipline by the horse's carer and support and guidance from their veterinarians.
Pituitary pars intermedia dysfunction is a common problem with which equine practitioners are becoming involved ever more frequently. This current review aims to outline recommendations for diagnosis, treatment and monitoring of the condition when encountered in practice. bs_bs_banner
216EQUINE VETERINARY EDUCATION Equine vet.
Latent equine herpesvirus type 1 (EHV-1) infection is common in horse populations worldwide and estimated to reach a prevalence nearing 90% in some areas. The virus causes acute outbreaks of disease that are characterized by abortion and sporadic cases of myeloencephalopathy (EHM), both severe threats to equine facilities. Different strains vary in their abortigenic and neuropathogenic potential and the simultaneous occurrence of EHM and abortion is rare. In this report, we present clinical observations collected during an EHV-1 outbreak caused by a so-called “neuropathogenic” EHV-1 G2254/D752 polymerase (Pol) variant, which has become more prevalent in recent years and is less frequently associated with abortions. In this outbreak with 61 clinically affected horses, 6/7 pregnant mares aborted and 8 horses developed EHM. Three abortions occurred after development of EHM symptoms. Virus detection was performed by nested PCR targeting gB from nasal swabs (11 positive), blood serum (6 positive) and peripheral blood mononuclear cells (9 positive) of a total of 42 horses sampled. All 6 fetuses tested positive for EHV-1 by PCR and 4 by virus isolation. Paired serum neutralization test (SNT) on day 12 and 28 after the index case showed a significant (≥ 4-fold) increase in twelve horses (n = 42; 28.6%). This outbreak with abortions and EHM cases on a single equine facility provided a unique opportunity for the documentation of clinical disease progression as well as diagnostic procedures.
BackgroundMultiple hypersensitivities (MHS) have been described in humans, cats, and dogs, but not horses.HypothesesHorses suffering from recurrent airway obstruction (RAO), insect bite hypersensitivity (IBH), or urticaria (URT) will have an increased risk of also being affected by another one of these hypersensitivities. This predisposition for MHS also will be associated with decreased shedding of strongylid eggs in feces and with a single nucleotide polymorphism (SNP
BIEC2‐224511), previously shown to be associated with RAO.AnimalsThe first population (P1) included 119 randomly sampled horses representative of the Swiss sporthorse population; the replication population (P2) included 210 RAO‐affected Warmblood horses and 264 RAO‐unaffected controls. All horses were Warmbloods, 14 years or older.MethodsAssociations between disease phenotypes (RAO, IBH, URT, MHS) fecal egg counts, the SNP
BIEC2‐224511 as well as management and environmental factors were investigated.ResultsIn P1, RAO‐affected horses had a 13.1 times higher odds ratio (OR) of also suffering from IBH (P = .004). In P2, the respective OR was 7.4 (P = .002) and IBH‐affected horses also showed a 7.1 times increased OR of concomitantly suffering from URT (P < .001). IBH, URT, and MHS phenotypes were significantly associated with the absence of nematode eggs in the feces.Conclusions and Clinical ImportanceThis is the first report of MHS in horses. Specifically, an increased risk for IBH should be expected in RAO‐affected horses.
Background: Recurrent airway obstruction (RAO) in horses is a naturally occurring dust-induced disease mainly characterized by bronchiolitis which shows histological and pathophysiological similarities to human chronic obstructive pulmonary disease (COPD). In human COPD previous investigations indicated an association with Chlamydophila psittaci infection. The present study was designed (1) to clarify a possible role of this infectious agent in RAO and (2) to investigate the suitability of this equine disorder as a model for human COPD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.