Recently described rhizolutin and collinolactone isolated from Streptomyces Gç 40/10 share the same novel carbon scaffold. Analyses by NMR and X-Ray crystallography verify the structure of collinolactone and propose a revision of rhizolutins stereochemistry. Isotope-labeled precursor feeding shows that collinolactone is biosynthesized via type I polyketide synthase with Baeyer-Villiger oxidation. CRISPR-based genetic strategies led to the identification of the biosynthetic gene cluster and a high-production strain. Chemical semisyntheses yielded collinolactone analogues with inhibitory effects on L929 cell line. Fluorescence microscopy revealed that only particular analogues induce monopolar spindles impairing cell division in mitosis. Inspired by the Alzheimerprotective activity of rhizolutin, we investigated the neuroprotective effects of collinolactone and its analogues on glutamate-sensitive cells (HT22) and indeed, natural collinolactone displays distinct neuroprotection from intracellular oxidative stress.
In vitro, hydrogel-based ECMs for functionalizing surfaces of various material have played an essential role in mimicking native tissue matrix. Polydimethylsiloxane (PDMS) is widely used to build microfluidic or organ-on-chip devices compatible with cells due to its easy handling in cast replication. Despite such advantages, the limitation of PDMS is its hydrophobic surface property. To improve wettability of PDMS-based devices, alginate, a naturally derived polysaccharide, was covalently bound to the PDMS surface. This alginate then crosslinked further hydrogel onto the PDMS surface in desired layer thickness. Hydrogel-modified PDMS was used for coating a topography chip system and in vitro investigation of cell growth on the surfaces. Moreover, such hydrophilic hydrogel-coated PDMS is utilized in a microfluidic device to prevent unspecific absorption of organic solutions. Hence, in both exemplary studies, PDMS surface properties were modified leading to improved devices.
Surface topographies are often discussed as an important parameter influencing basic cell behavior. Whereas most in-vitro studies deal with microstructures with sharp edges, smooth, curved microscale topographies might be more relevant concerning in-vivo situations. Addressing the lack of highly defined surfaces with varying curvature, we present a topography chip system with 3D curved features of varying spacing, curvature radii as well as varying overall dimensions of curved surfaces. The CurvChip is produced by low-cost photolithography with thermal reflow, subsequent (repetitive) PDMS molding and hot embossing. The platform facilitates the systematic invitro investigation of the impact of substrate curvature on cell types like epithelial, endothelial, smooth muscle cells, or stem cells. Such investigations will not only help to further understand the mechanism of curvature sensation but may also contribute to optimize cellmaterial interactions in the field of regenerative medicine.
Soft lithography, a tool widely applied in biology and life sciences with numerous applications, uses the soft molding of photolithography-generated master structures by polymers. The central part of a photolithography set-up is a mask-aligner mostly based on a high-pressure mercury lamp as an ultraviolet (UV) light source. This type of light source requires a high level of maintenance and shows a decreasing intensity over its lifetime, influencing the lithography outcome. In this paper, we present a low-cost, bench-top photolithography tool based on ninety-eight 375 nm light-emitting diodes (LEDs). With approx. 10 W, our presented lithography set-up requires only a fraction of the energy of a conventional lamp, the LEDs have a guaranteed lifetime of 1000 h, which becomes noticeable by at least 2.5 to 15 times more exposure cycles compared to a standard light source and with costs less than 850 C it is very affordable. Such a set-up is not only attractive to small academic and industrial fabrication facilities who want to enable work with the technology of photolithography and cannot afford a conventional set-up, but also microfluidic teaching laboratories and microfluidic research and development laboratories, in general, could benefit from this cost-effective alternative. With our self-built photolithography system, we were able to produce structures from 6 μm to 50 μm in height and 10 μm to 200 μm in width. As an optional feature, we present a scaled-down laminar flow hood to enable a dust-free working environment for the photolithography process.
Cell-cell and cell-extracellular matrix (ECM) adhesion regulates fundamental cellular functions and is crucial for cell-material contact. Adhesion is influenced by many factors like affinity and specificity of the receptorligand interaction or overall ligand concentration and density. To investigate molecular details of cell-ECM and cadherins (cell-cell) interaction in vascular cells functional nanostructured surfaces were used Ligand-functionalized gold nanoparticles (AuNPs) with 6-8 nm diameter, are precisely immobilized on a surface and separated by nonadhesive regions so that individual integrins or cadherins can specifically interact with the ligands on the AuNPs. Using 40 nm and 90 nm distances between the AuNPs and functionalized either with peptide motifs of the extracellular matrix (RGD or REDV) or vascular endothelial-cadherins (VEC), the influence of distance and ligand specificity on spreading and adhesion of endothelial cells (ECs) and smooth muscle cells (SMCs) was investigated. We demonstrate that RGD-dependent adhesion of vascular cells is similar to other cell types and that the distance dependence for integrin binding to ECM-peptides is also valid for the REDV motif. VEC-ligands decrease adhesion significantly on the tested ligand distances. These results may be helpful for future improvements in vascular tissue engineering and for development of implant surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.