The mitochondrial outer membrane contains machinery for the import of preproteins encoded by nuclear genes. Eight different Tom (translocase of outer membrane) proteins have been identified that function as receptors and/or are related to a hypothetical general import pore. Many mitochondrial membrane channel activities have been described, including one related to Tim23 of the inner-membrane protein-import system; however, the pore-forming subunit(s) of the Tom machinery have not been identified until now. Here we describe the expression and functional reconstitution of Tom40, an integral membrane protein with mainly beta-sheet structure. Tom40 forms a cation-selective high-conductance channel that specifically binds to and transports mitochondrial-targeting sequences added to the cis side of the membrane. We conclude that Tom40 is the pore-forming subunit of the mitochondrial general import pore and that it constitutes a hydrophilic, approximately 22 A wide channel for the import of preproteins.
1 TRPM2 (melastatin-like transient receptor potential 2 channel) is a nonselective cation channel that is activated under conditions of oxidative stress leading to an increase in intracellular free Ca 27; 6.3570.18; 5.2970.12, respectively). The order of potency of the PARP inhibitors in these assays (SB7501394PJ344DPQ) was the same as for inhibition of isolated PARP enzyme. 4 SB750139-B, PJ34 and DPQ had no effect on inward currents elicited by intracellular ADP-ribose in tetracycline-induced TRPM2-HEK293 cells, suggesting that PARP inhibitors are not interacting directly with the channel. 5 SB750139-B, PJ34 and DPQ inhibited increases in [Ca 2 þ ] i in a rat insulinoma cell line (CRI-G1 cells) endogenously expressing TRPM2 (pIC 50 vs 100 mM H 2 O 2 : 7.6470.38; 6.6870.28; 4.7870.05, respectively). 6 These data suggest that oxidative stress causes TRPM2 channel opening in both recombinant and endogenously expressing cell systems via activation of PARP enzymes.
The chloroplastic outer envelope protein OEP75 with a molecular weight of 75 kDa probably forms the central pore of the protein import machinery of the outer chloroplastic membrane. Patch-clamp analysis shows that heterologously expressed, purified and reconstituted OEP75 constitutes a voltage-gated ion channel with a unit conductance of Λ ϭ 145pS. Activation of the OEP75 channel in vitro is completely dependent on the magnitude and direction of the voltage gradient. Therefore, movements of protein charges of parts of OEP75 in the membrane electric field are required either for pore formation or its opening. In the presence of precursor protein from only one side of the bilayer, strong flickering and partial closing of the channel was observed, indicating a specific interaction of the precursor with OEP75. The comparatively low ionic conductance of OEP75 is compatible with a rather narrow aqueous pore (d pore ≅ 8-9 Å). Provided that protein and ion translocation occur through the same pore, this implies that the environment of the polypeptide during the transit is mainly hydrophilic and that protein translocation requires almost complete unfolding of the precursor.
Mitochondrial preproteins are imported by a multisubunit translocase of the outer membrane (TOM), including receptor proteins and a general import pore. The central receptor Tom22 binds preproteins through both its cytosolic domain and its intermembrane space domain and is stably associated with the channel protein Tom40 (refs 11-13). Here we report the unexpected observation that a yeast strain can survive without Tom22, although it is strongly reduced in growth and the import of mitochondrial proteins. Tom22 is a multifunctional protein that is required for the higher-level organization of the TOM machinery. In the absence of Tom22, the translocase dissociates into core complexes, representing the basic import units, but lacks a tight control of channel gating. The single membrane anchor of Tom22 is required for a stable interaction between the core complexes, whereas its cytosolic domain serves as docking point for the peripheral receptors Tom20 and Tom70. Thus a preprotein translocase can combine receptor functions with distinct organizing roles in a multidomain protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.