In order to quantify autoantibodies in the sera of patients with autoimmune disease, we have created a microarray-based immunoassay that allows the simultaneous analysis of 18 known autoantigens. The microarrays contain serial dilutions of the various antigens, thereby allowing accurate determination of autoantibody titer using minimal amounts of serum. The assay is very sensitive and highly specific: as little as 40 fg of a known protein standard can be detected with little or no cross-reactivity to nonspecific proteins. The signal intensities observed from serial dilutions of immobilized antigen correlate well with serial dilutions of autoimmune sera. Miniaturized and highly parallelized immunoassays like these will reduce costs by decreasing reagent consumption and improve efficiency by greatly increasing the number of assays that can be performed with a single serum sample. This system will significantly facilitate and accelerate the diagnostics of autoimmune diseases and can be adapted easily to any other kind of immunoassay.
During the discovery and description of seven New Zealand methane seep sites, an infaunal assemblage dominated by ampharetid polychaetes was found in association with high seabed methane emission. This ampharetid-bed assemblage had a mean density of 57,000 6 7800 macrofaunal individuals m 22 and a maximum wet biomass of 274 g m 22 , both being among the greatest recorded from deep-sea methane seeps. We investigated these questions: Does the species assemblage present within these ampharetid beds form a distinct seep community on the New Zealand margin? and What type of chemoautotrophic microbes fuel this heterotrophic community? Unlike the other macro-infaunal assemblages, the ampharetid-bed assemblage composition was homogeneous, independent of location. Based on a mixing model of species-specific mass and isotopic composition, combined with published respiration measurements, we estimated that this community consumes 29-90 mmol C m 22 d 21 of methane-fueled biomass; this is . 290 times the carbon fixed by anaerobic methane oxidizers in these ampharetid beds. A fatty acid biomarker approach supported the finding that this community, unlike those previously known, consumes primarily aerobic methanotrophic bacteria. Due to the novel microbial fueling and high methane flux rates, New Zealand's ampharetid beds provide a model system to study the influence of metazoan grazing on microbially mediated biogeochemical cycles, including those that involve greenhouse gas emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.