Hairdressers are highly exposed to skin-damaging substances. The self-reported incidence of hand eczema was substantially higher in female hairdressers than in controls from the general population and than that found previously in register-based studies. For many individuals, onset of hand eczema occurs early in life. Only about 10% of the hand eczema cases among hairdressers would be prevented if no one with skin atopy entered the trade.
Hairdressers are frequently exposed to bleaching powder containing persulfates, a group of compounds that may induce hypersensitivity in the airways. The mechanism causing this reaction is not clear. The aim of this study was to identify changes in the nasal lavage fluid proteome after challenge with potassium persulfate in hairdressers with bleaching powder-associated rhinitis. Furthermore, we aimed to compare their response to that of hairdressers without nasal symptoms, and atopic subjects with pollen-associated nasal symptoms. To study the pathogenesis of persulfate-associated rhinitis, the response in protein expression from the upper airway was assessed by time-dependent proteomic expression analysis of nasal lavage fluids. Samples were prepared by pooling nasal lavage fluids from the groups at different time points after challenge. Samples were depleted of high-abundant proteins, labeled with iTRAQ and analyzed by online 2D-nanoLC-MS/MS. Differences in the protein pattern between the three groups were observed. Most proteins with differentially expressed levels were involved in pathways of lipid transportation and antimicrobial activities. The major finding was increased abundance of apolipoprotein A-1, 20 min postchallenge, detected solely in the group of symptomatic hairdressers. Our results suggest there may be differences between the mechanisms responsible for the rhinitis in the symptomatic and atopic group.
Hairdressers have an increased risk for developing airway symptoms, for example, asthma and rhinitis. Persulfates, which are oxidizing agents in bleaching powder, are considered important causal agents for these symptoms. However, the underlying mechanisms are unclear. The aim was therefore to measure proteomic changes in nasal lavage fluid from persulfate-challenged subjects to identify proteins potentially involved in the pathogenesis of bleaching powder-associated rhinitis or candidate effect biomarkers for persulfate. Also, oxidized peptides were measured to evaluate their usefulness as biomarkers for persulfate exposure or effect, for example, oxidative stress. Samples from hairdressers with and without bleaching powder-associated rhinitis were analyzed with liquid chromatography tandem mass spectrometry using selected reaction monitoring to target 246 proteins and five oxidized peptides. Pathway analysis was applied to obtain a functional overview of the proteins. Several proteins involved in biologically meaningful pathways, functions, or disorders, for example, inflammatory responses, oxidative stress, epithelium integrity, and dermatological disorders, changed after the persulfate challenge. A list with nine proteins that appeared to be affected by the persulfate challenge and should be followed up was defined. An albumin peptide containing oxidized tryptophan increased 2 h and 5 h after the challenge but not after 20 min, which indicates that such peptides may be useful as oxidative stress biomarkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.