AG inhibited NO formation in a dose-dependent way. Yet, AG had no haemodynamic effects, suggesting a minor cardiovascular influence of iNOS in this endotoxin model, in parallel to what has been found in microbial sepsis.
After LPS, tissue clearance of albumin was not increased in any major tissue, in spite of increased serum levels of NO end products. Apparently, after activation of iNOS, the augmented release of NO is not necessarily associated with increased albumin extravasation.
Background and ObjectivesIt has been suggested that the potency of epidural morphine might be explained by spinal metabolism to the active and potent metabolite morphine-6-glucuronide (M6G). The main objective of this study was to describe the early pharmacokinetics of epidurally administered, morphine with special attention to the appearance of the glucuronated metabolites in cerebrospinal fluid (CSF).MethodsMorphine was administered epidurally to eight patients scheduled for major abdominal surgery. The concentrations of morphine and its 6-glucuronide and 3-glucuronide metabolites were monitored in blood and CSF at 10, 30, 60, and 120 minutes and 10 and 24 hours. Postoperative pain was estimated on a visual analog scale, and analgesia requirements (administered by a patient-controlled techique) were recorded.ResultsOnly traces of the metabolites were found in CSF and in only two patients throughout the 24 hours. Both metabolites appeared rapidly (within 30 minutes) in plasma in all patients and were found in plasma throughout the study period. Morphine concentration peaked in CSF within 30 minutes at a very high level; in plasma, it peaked at 10 minutes. No correlation was seen between initial or later concentrations of morphine in CSF and postoperative pain or morphine requirements.ConclusionsNo evidence of spinal metabolism of morphine could be found. Rapid distribution of morphine to CSF and plasma occurred after epidural administration. No value of initial CSF morphine concentrations for prediction of analgesic requirements could be demonstrated.
Aminoguanidine at 20 mg kg(-1) did not reverse the haemodynamic changes induced by LPS. Neither did the drug affect the tissue plasma clearance of albumin or the tissue plasma volume.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.