In spite of their common hypersaline environment, halophilic archaea are surprisingly different in their nutritional demands and metabolic pathways. The metabolic diversity of halophilic archaea was investigated at the genomic level through systematic metabolic reconstruction and comparative analysis of four completely sequenced species: Halobacterium salinarum, Haloarcula marismortui, Haloquadratum walsbyi, and the haloalkaliphile Natronomonas pharaonis. The comparative study reveals different sets of enzyme genes amongst halophilic archaea, e.g. in glycerol degradation, pentose metabolism, and folate synthesis. The carefully assessed metabolic data represent a reliable resource for future system biology approaches as it also links to current experimental data on (halo)archaea from the literature.
Wild birds play an important role as reservoir hosts and vectors for zoonotic arboviruses and foster their spread. Usutu virus (USUV) has been circulating endemically in Germany since 2011, while West Nile virus (WNV) was first diagnosed in several bird species and horses in 2018. In 2017 and 2018, we screened 1709 live wild and zoo birds with real-time polymerase chain reaction and serological assays. Moreover, organ samples from bird carcasses submitted in 2017 were investigated. Overall, 57 blood samples of the live birds (2017 and 2018), and 100 organ samples of dead birds (2017) were positive for USUV-RNA, while no WNV-RNA-positive sample was found. Phylogenetic analysis revealed the first detection of USUV lineage Europe 2 in Germany and the spread of USUV lineages Europe 3 and Africa 3 towards Northern Germany. USUV antibody prevalence rates were high in Eastern Germany in both years. On the contrary, in Northern Germany, high seroprevalence rates were first detected in 2018, with the first emergence of USUV in this region. Interestingly, high WNV-specific neutralizing antibody titers were observed in resident and short-distance migratory birds in Eastern Germany in 2018, indicating the first signs of a local WNV circulation.
One year after the first autochthonous transmission of West Nile virus (WNV) to birds and horses in Germany, an epizootic emergence of WNV was again observed in 2019. The number of infected birds and horses was considerably higher compared to 2018 (12 birds, two horses), resulting in the observation of the first WNV epidemy in Germany: 76 cases in birds, 36 in horses and five confirmed mosquito-borne, autochthonous human cases. We demonstrated that Germany experienced several WNV introduction events and that strains of a distinct group (Eastern German
Bovine paratuberculosis is caused by the infection of young calves with Mycobacterium avium subsp. paratuberculosis, resulting in a chronic granulomatous infection of predominantly the ileum. After an incubation period of 2 to 5 years, the disease becomes progressive in some of the chronically infected, but asymptomatic cows. This results in a protein-losing enteropathy that will ultimately be fatal. A loss of cell-mediated immune responses in symptomatic animals has been described, but no information is available concerning immune reactivity in the intestine. We sought to investigate putative disease status-associated lymphocyte subset distributions and antigen-specific functional characteristics of mononuclear cells isolated from blood, gutassociated lymphoid tissue, and the intestinal walls of 22 cows in different stages of disease and in control animals. The results demonstrated a significant decrease in CD4 ؉ T-cell frequency and a significant increase in TcR1-N12؉ ␥␦ T-cell frequency in ileum lamina propria lymphocytes of symptomatic animals compared to the asymptomatic shedders. Immunohistology revealed that there was also an absolute decrease in the number of CD4 ؉ T cells in sections of the lesional ileum. Our findings also indicated that both peripheral and intestinal cell-mediated responses are decreased in symptomatic animals compared to asymptomatic animals. We conclude that the decrease in cell-mediated responses is likely related to a loss of antigen-specific CD4 ؉ T cells, which is most prominent in the lesional ileum from symptomatic animals, thus contributing to the progressive nature of bovine paratuberculosis.
Clinically relevant extended-spectrum beta-lactamase (ESBL)-producing multi-resistant Escherichia coli have been on the rise for years. Initially restricted to mostly a clinical context, recent findings prove their prevalence in extraclinical settings independent of the original occurrence of antimicrobial resistance in the environment. To get further insights into the complex ecology of potentially clinically relevant ESBL-producing E. coli, 24 isolates from wild birds in Berlin, Germany, and 40 ESBL-producing human clinical E. coli isolates were comparatively analyzed. Isolates of ST410 occurred in both sample groups (six). In addition, three ESBL-producing E. coli isolates of ST410 from environmental dog feces and one clinical dog isolate were included. All 10 isolates were clonally analyzed showing almost identical macrorestriction patterns. They were chosen for whole-genome sequencing revealing that the whole-genome content of these 10 E. coli isolates showed a very high genetic similarity, differing by low numbers of single nucleotide polymorphisms only. This study gives initial evidence for a recent interspecies transmission of a new successful clone of ST410 E. coli between wildlife, humans, companion animals and the environment. The results underline the zoonotic potential of clinically relevant multi-resistant bacteria found in the environment as well as the mandatory nature of the 'One Health' approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.