In spite of their common hypersaline environment, halophilic archaea are surprisingly different in their nutritional demands and metabolic pathways. The metabolic diversity of halophilic archaea was investigated at the genomic level through systematic metabolic reconstruction and comparative analysis of four completely sequenced species: Halobacterium salinarum, Haloarcula marismortui, Haloquadratum walsbyi, and the haloalkaliphile Natronomonas pharaonis. The comparative study reveals different sets of enzyme genes amongst halophilic archaea, e.g. in glycerol degradation, pentose metabolism, and folate synthesis. The carefully assessed metabolic data represent a reliable resource for future system biology approaches as it also links to current experimental data on (halo)archaea from the literature.
Type III protein secretion systems are unique bacterial nanomachines with the capacity to deliver bacterial effector proteins into eukaryotic cells. These systems are critical to the biology of many pathogenic or symbiotic bacteria for insects, plants, animals, and humans. Essential components of these systems are multiprotein envelope-associated organelles known as the needle complex and a group of membrane proteins that compose the so-called export apparatus. Here, we show that components of the export apparatus associate intimately with the needle complex, forming a structure that can be visualized by cryo-electron microscopy. We also show that formation of the needle complex base is initiated at the export apparatus and that, in the absence of export apparatus components, there is a significant reduction in the levels of needle complex base assembly. Our results show a substantial coordination in the assembly of the two central elements of type III secretion machines.bacterial pathogenesis | cryo-electron microscopy | membrane proteins | organelle assembly | protein secretion
Type 3 secretion systems use 3.5-megadalton syringe-like, membrane-embedded 'injectisomes', each containing an ~800-Å-long needle complex to connect intracellular compartments of infectious bacteria and hosts. Here we identify requirements for substrate association with, transport through and exit from the injectisome of Salmonella enterica serovar Typhimurium. This guided the design of substrates that become trapped within the secretion path and enabled visualization of injectisomes in action in situ. We used cryo-EM to define the secretion path, providing a structural explanation as to why effector proteins must be unfolded during transport. Furthermore, trapping of a heterologous substrate in the needle prevents secretion of natural bacterial effectors. Together, the data reveal the path of protein secretion across multiple membranes and show that mechanisms rejecting unacceptable substrates can be undermined, and transport of bacterial effectors across an already assembled type 3 secretion system can be inhibited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.