We propose a unified model combining the strength of extractive and abstractive summarization. On the one hand, a simple extractive model can obtain sentence-level attention with high ROUGE scores but less readable. On the other hand, a more complicated abstractive model can obtain word-level dynamic attention to generate a more readable paragraph. In our model, sentence-level attention is used to modulate the word-level attention such that words in less attended sentences are less likely to be generated. Moreover, a novel inconsistency loss function is introduced to penalize the inconsistency between two levels of attentions. By end-to-end training our model with the inconsistency loss and original losses of extractive and abstractive models, we achieve state-of-theart ROUGE scores while being the most informative and readable summarization on the CNN/Daily Mail dataset in a solid human evaluation.
We consider the problem of recovering a target matrix that is a superposition of low-rank and sparse components, from a small set of linear measurements. This problem arises in compressed sensing of structured high-dimensional signals such as videos and hyperspectral images, as well as in the analysis of transformation invariant low-rank recovery. We analyze the performance of the natural convex heuristic for solving this problem, under the assumption that measurements are chosen uniformly at random. We prove that this heuristic exactly recovers low-rank and sparse terms, provided the number of observations exceeds the number of intrinsic degrees of freedom of the component signals by a polylogarithmic factor. Our analysis introduces several ideas that may be of independent interest for the more general problem of compressive sensing of superpositions of structured signals. 1
We consider the problem of recovering a target matrix that is a superposition of low-rank and sparse components, from a small set of linear measurements. This problem arises in compressed sensing of structured high-dimensional signals such as videos and hyperspectral images, as well as in the analysis of transformation invariant low-rank recovery. We analyze the performance of the natural convex heuristic for solving this problem, under the assumption that measurements are chosen uniformly at random. We prove that this heuristic exactly recovers low-rank and sparse terms, provided the number of observations exceeds the number of intrinsic degrees of freedom of the component signals by a polylogarithmic factor. Our analysis introduces several ideas that may be of independent interest for the more general problem of compressed sensing and decomposing superpositions of multiple structured signals.
In this paper, we study the problem of decomposing a superposition of a low-rank matrix and a sparse matrix when a relatively few linear measurements are available. This problem arises in many data processing tasks such as aligning multiple images or rectifying regular texture, where the goal is to recover a low-rank matrix with a large fraction of corrupted entries in the presence of nonlinear domain transformation. We consider a natural convex heuristic to this problem which is a variant to the recently proposed Principal Component Pursuit. We prove that under suitable conditions, this convex program guarantees to recover the correct low-rank and sparse components despite reduced measurements. Our analysis covers both random and deterministic measurement models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.