Kanamycin is one of the most widely used antibiotics, yet its biosynthetic pathway remains unclear. Current proposals suggest that the kanamycin biosynthetic products are linearly related via single enzymatic transformations. To explore this system, we have reconstructed the entire biosynthetic pathway through the heterologous expression of combinations of putative biosynthetic genes from Streptomyces kanamyceticus in the non-aminoglycoside-producing Streptomyces venezuelae. Unexpectedly, we discovered that the biosynthetic pathway contains an early branch point, governed by the substrate promiscuity of a glycosyltransferase, that leads to the formation of two parallel pathways in which early intermediates are further modified. Glycosyltransferase exchange can alter flux through these two parallel pathways, and the addition of other biosynthetic enzymes can be used to synthesize known and new highly active antibiotics. These results complete our understanding of kanamycin biosynthesis and demonstrate the potential of pathway engineering for direct in vivo production of clinically useful antibiotics and more robust aminoglycosides.
Due to the worldwide prevalence of multidrug-resistant pathogens and high incidence of diseases such as cancer, there is an urgent need for the discovery and development of new drugs. Nearly half of the FDA-approved drugs are derived from natural products that are produced by living organisms, mainly bacteria, fungi, and plants. Commercial development is often limited by the low yield of the desired compounds expressed by the native producers. In addition, recent advances in whole genome sequencing and bioinformatics have revealed an abundance of cryptic biosynthetic gene clusters within microbial genomes. Genetic manipulation of clusters in the native host is commonly used to awaken poorly expressed or silent gene clusters, however, the lack of feasible genetic manipulation systems in many strains often hinders our ability to engineer the native producers. The transfer of gene clusters into heterologous hosts for expression of partial or entire biosynthetic pathways is an approach that can be used to overcome this limitation. Heterologous expression also facilitates the chimeric fusion of different biosynthetic pathways, leading to the generation of “unnatural” natural products. The genus Streptomyces is especially known to be a prolific source of drugs/antibiotics, its members are often used as heterologous expression hosts. In this review, we summarize recent applications of Streptomyces species, S. coelicolor, S. lividans, S. albus, S. venezuelae and S. avermitilis, as heterologous expression systems.
Marine natural products have become an increasingly important source of new drug leads during recent years. In an attempt to identify novel anti-microbial natural products by bioprospecting deep-sea Actinobacteria, three new angucyclines, nocardiopsistins A-C, were isolated from Nocardiopsis sp. strain HB-J378. Notably, the supplementation of the rare earth salt Lanthanum chloride (LaCl3) during fermentation of HB-J378 significantly increased the yield of these angucyclines. The structures of nocardiopsistins A-C were identified by 1D and 2D NMR and HR-MS data. Nocardiopsistins A-C have activity against MRSA (methicillin-resistant Staphylococcus aureus) with MICs of 3.12–12.5 μg/mL; the potency of nocardiopsistin B is similar to that of the positive control, chloramphenicol. Bioinformatic analysis of the draft genome of HB-J378 identified a set of three core genes in a biosynthetic gene cluster that encode a typical aromatic or type II polyketide synthase (PKS) system, including ketoacyl:ACP synthase α-subunit (KSα), β-subunit (KSβ) and acyl carrier protein (ACP). The production of nocardiopsistins A-C was abolished when the three genes were knocked out, indicating their indispensable role in the production of nocardiopsistins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.