The present report examines the in vitro genotoxicity (micronucleus assay) of herbicides and adjuvants and reports on an in vivo human study on potential endocrine effects of pesticides, including herbicides. Adjuvants are used in conjunction with 2,4-dichlorophenoxy acetic acid (2,4-D) and other herbicides. Earlier pesticide applier survey results (n = 709) show that 59% of the applicators used adjuvants, and the majority of this group used paraffinic oils and/or surfactant mixtures. As a beginning effort to explore the role of adjuvants and herbicides in hormonally based reproductive effects, a prospective, controlled study was performed to analyze blood specimens from three different exposure groups (applicators using herbicides only; applicators using both herbicides and insecticides; and applicators using fumigants in addition to herbicides and insecticides; and a control group composed of other agricultural workers including organic farmers). The applicators and controls were age- and smoking-matched. Study subjects (n = 78) were tested before, during, and after completion of pesticide application season for the effects of pesticide products on hormone levels in the bloodstream. Of the applicator exposure groups examined, only the herbicide group showed significant endocrinologic differences from controls. Free testosterone levels were significantly elevated in post-season measurements (p = 0.032), and follicle-stimulating hormone (FSH) was significantly decreased at the height of the season (p = 0.016) and in the post-season (p = 0.010) as compared to controls. These endocrinologic findings are discussed in terms of their possible relationship to potential endocrine effects of herbicides, herbicide contaminants, and adjuvants. In vitro genotoxicity examination compared four different commercially available surfactant mixtures with 12 different commercial herbicide products, including six different chlorophenoxy herbicides. Only one herbicide yielded a significant dose-response curve. All four adjuvants showed positive dose-response effects. These preliminary data suggest that adjuvants are not inert but are toxicologically active components added to herbicide mixtures. Whether adjuvant toxicant effects are additive or are independent of herbicide effects is poorly understood.
This study was conducted to determine whether progesterone inhibits luteinizing hormone (LH) secretion in female pigs by a direct action on the pituitary gland. Eight ovariectomized, hypophysial stalk-transected gilts were given 1-pg pulses of gonadotropin-releasing hormone iv every 45 min from Day 0 to 12. On Days 5-12, each of four gilts received either progesterone or oil vehicle im at 12-hr intervals. Serum progesterone concentrations in steroid-treated gilts reached 70 2 6.8 ng/ml (mean 2 SE) by Day 8 and remained elevated thereafter, whereas serum progesterone concentrations in oil-treated controls were less than 1 ng/ml for the entire study. Daily serum LH concentrations were not different between gilts treated with progesterone or oil. The 1-pg pulses of gonadotropin-releasing hormone reliably evoked pulses of LH in both treatment groups. The LH pulse frequency and amplitude, assessed from samples collected every 15 min for 6 hr on Day 12, were similar for progesterone-and oil-treated gilts. These results provide evidence that progesterone does not act at the pituitary gland to alter LH secretion in pigs.gonadotropin-releasing hormone (GnRH) from the hypothalamus (5). Progesterone, therefore, may decrease LH secretion in the pig by acting directly on the pituitary gland and/or inhibiting the secretion of GnRH. In an effort to determine the site of the negative feedback of progesterone in pigs, we assessed LH secretion after the administration of progesterone to hypophysial stalktransected (HST) gilts given unvarying pulses of GnRH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.