BackgroundAsthma is a disease of varying severity and differing disease mechanisms. To date, studies aimed at stratifying asthma into clinically useful phenotypes have produced a number of phenotypes that have yet to be assessed for stability and to be validated in independent cohorts. The aim of this study was to define and validate, for the first time ever, clinically driven asthma phenotypes using two independent, severe asthma cohorts: ADEPT and U-BIOPRED.MethodsFuzzy partition-around-medoid clustering was performed on pre-specified data from the ADEPT participants (n = 156) and independently on data from a subset of U-BIOPRED asthma participants (n = 82) for whom the same variables were available. Models for cluster classification probabilities were derived and applied to the 12-month longitudinal ADEPT data and to a larger subset of the U-BIOPRED asthma dataset (n = 397). High and low type-2 inflammation phenotypes were defined as high or low Th2 activity, indicated by endobronchial biopsies gene expression changes downstream of IL-4 or IL-13.ResultsFour phenotypes were identified in the ADEPT (training) cohort, with distinct clinical and biomarker profiles. Phenotype 1 was “mild, good lung function, early onset”, with a low-inflammatory, predominantly Type-2, phenotype. Phenotype 2 had a “moderate, hyper-responsive, eosinophilic” phenotype, with moderate asthma control, mild airflow obstruction and predominant Type-2 inflammation. Phenotype 3 had a “mixed severity, predominantly fixed obstructive, non-eosinophilic and neutrophilic” phenotype, with moderate asthma control and low Type-2 inflammation. Phenotype 4 had a “severe uncontrolled, severe reversible obstruction, mixed granulocytic” phenotype, with moderate Type-2 inflammation. These phenotypes had good longitudinal stability in the ADEPT cohort. They were reproduced and demonstrated high classification probability in two subsets of the U-BIOPRED asthma cohort.ConclusionsFocusing on the biology of the four clinical independently-validated easy-to-assess ADEPT asthma phenotypes will help understanding the unmet need and will aid in developing tailored therapies.Trial registration NCT01274507 (ADEPT), registered October 28, 2010 and NCT01982162 (U-BIOPRED), registered October 30, 2013.Electronic supplementary materialThe online version of this article (doi:10.1186/s12931-016-0482-9) contains supplementary material, which is available to authorized users.
Abstract. Schwann cells in culture divide in response to defined mitogens such as PDGF and glial growth factor (GGF), but proliferation is greatly enhanced if agents such as forskolin, which increases Schwann cell intracellular cAMP, are added at the same time as PDGF or GGF (Davis, J. B., and P. Stroobant. 1990. J. Cell Biol. 110:1353-1360. The effect of forskolin is probably due to an increase in numbers of PDGF receptors (Weinmaster, G., and G. Lemke. 1990. .Neuropeptides and/$-adrenergic agonists have been reported to have no effect on potentiating the mitogenic response of either PDGF or GGE We show that the neuropeptide calcitonin gene-related peptide (CGRP) increases Schwann cell cAMP levels, but the cells rapidly desensitize. We therefore stimulated the cells in pulsatile fashion to partly overcome the effects of desensitization and show that CGRP can synergize with PDGF to stimulate Schwann cell proliferation, and that CGRP is as effective as forskolin in the pulsatile regime.CGRP is a good substrate for the neutral endopeptidase 24.11. Schwann cells in vivo have this protease on their surface, so the action of CGRP could be terminated by this enzyme and desensitization prevented. We therefore suggest that CGRP may play an important role in stimulating Schwann cell proliferation by regulating the response of mitogenic factors such as PDGE T nEaE are two circumstances in which Schwann ceils, the glial cells of peripheral nerves, proliferate: during development and after nerve injury. During development, they proliferate as they migrate out along growing axons (Eccleston, 1992). After nerve injury, they undergo two waves of proliferation: one occurs acutely, adjacent to the injury site, whereas the second occurs over a prolonged period as the nerve undergoes Wallerian degeneration and regeneration and extends distally from the injury site (Fawcett and Keynes, 1990). Although it is still not clear how Schwann cell division is controlled in vivo, there has been considerable effort to identify the mitogens that regulate the proliferation of rat sciatic nerve Schwann cells in culture. PDGF, FGF-1 and FGF-2, TGF-/~, and glial growth factor (GGF) m have all been shown to promote the proliferation of these ceils. In addition, Schwann cells in culture respond to
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.