Algal blooms are a naturally occurring phenomenon which can occur in both freshwater and saltwater. However, due to excess nutrient loading in water bodies (e.g. agricultural runoff and industrial activities), harmful algal blooms (HABs) have become an increasing issue globally, and can even cause health effects in humans due to the release of cyanotoxins. Among currently available treatment methods, sonication has received increasing attention for algal control because of its low impact on ecosystems and the environment. The effects of ultrasound on algal cells are well understood and operating parameter such as frequency, intensity, and duration of exposure has been well studied. However, most studies have been limited to laboratory data interpretation due to complicated environmental conditions in the field. Only a few field and pilot tests in small reservoirs were reported and the applicability of ultrasound for HABs prevention and control is still under question. There is a lack of information on the upscaling of ultrasonication devices for HAB control on larger water bodies, considering field influencing factors such as rainfall, light intensity/duration, temperature, water flow, nutrients loading, and turbidity. In this review article, we address the challenges and field considerations of ultrasonic applications for controlling algal blooms. An extensive literature survey, from the fundamentals of ultrasound techniques to recent ultrasound laboratory and field studies, has been thoroughly conducted and summarized to identify future technical expectations for field applications. Case studies investigating spatial distribution of frequency and pressure during sonication are highlighted with future implications.
Water quality control and management in water resources are important for providing clean and safe water to the public. Due to their large area, collection, analysis, and management of a large amount of water quality data are essential. Water quality data are collected mainly by manual field sampling, and recently real-time sensor monitoring has been increasingly applied for efficient data collection. However, real-time sensor monitoring still relies on only a few parameters, such as water level, velocity, temperature, conductivity, dissolved oxygen (DO), and pH. Although advanced sensing technologies, such as hyperspectral images (HSI), have been used for the areal monitoring of algal bloom, other water quality sensors for organic compounds, phosphorus (P), and nitrogen (N) still need to be further developed and improved for field applications. The utilization of information and communications technology (ICT) with sensor technology shows great potential for the monitoring, transmission, and management of field water-quality data and thus for developing effective water quality management. This paper presents a review of the recent advances in ICT and field applicable sensor technology for monitoring water quality, mainly focusing on water resources, such as rivers and lakes, and discusses the challenges and future directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.