The hydroxylated benzene metabolite hydroquinone (HQ) is mainly generated from benzene, an important industrial chemical, and is also a common dietary component. Although numerous reports have addressed the tumorigenesis-inducing effects of HQ, few papers have explored its molecular regulatory mechanism in immunological responses. In this study we characterized Akt (protein kinase B)-targeted regulation by HQ and its derivatives, in suppressing inflammatory responses using cellular, molecular, biochemical, and immunopharmacological approaches. HQ down-regulated inflammatory responses such as NO production, surface levels of pattern recognition receptors, and cytokine gene expression with IC 50 values that ranged from 5 to 10 M. HQ inhibition was mediated by blocking NF-B activation via suppression of its translocation pathway, which is composed of Akt, IB␣ kinase , and IB␣. Of the targets in this pathway, HQ directly targeted and bound to the sulfhydryl group of Cys-310 of Akt and sequentially interrupted the phosphorylation of both Thr-308 and Ser-473 by mediation of -mercaptoethanol, according to the liquid chromatography/ mass spectroscopy analysis of the interaction of HQ with an Aktderived peptide. Therefore, our data suggest that Akt and its target site Cys-310 can be considered as a prime molecular target of HQ-mediated immunosuppression and for novel antiAkt-targeted immunosuppressive drugs.
3-Phosphoinositide-dependent protein kinase-1 (PDK1) appears to play a central regulatory role in many cell signalings between phosphoinositide-3 kinase and various intracellular serine/threonine kinases. In resting cells, PDK1 is known to be constitutively active and is further activated by tyrosine phosphorylation (Tyr 9 and Tyr 373/376 ) following the treatment of the cell with insulin or pervanadate. However, little is known about the mechanisms for this additional activation of PDK1. Here, we report that the SH2 domain of Src, Crk, and GAP recognized tyrosine-phosphorylated PDK1 in vitro. Destabilization of PDK1 induced by geldanamycin (a Hsp90 inhibitor) was partially blocked in HEK 293 cells expressing PDK1-Y9F. Co-expression of Hsp90 enhanced PDK1-Src complex formation and led to further increased PDK1 activity toward PKB and SGK. Immunohistochemical analysis with anti-phospho-Tyr 9 antibodies showed that the level of Tyr 9 phosphorylation was markedly increased in tumor samples compared with normal. Taken together, these data suggest that phosphorylation of PDK1 on Tyr 9 , distinct from Tyr 373/376 , is important for PDK1/Src complex formation, leading to PDK1 activation. Furthermore, Tyr 9 phosphorylation is critical for the stabilization of both PDK1 and the PDK1/Src complex via Hsp90-mediated protection of PDK1 degradation.One of the key features of multicellular organisms is that all cells are able to adjust to changes in the surrounding environment. A diverse set of environmental cues utilize intracellular protein phosphorylation-dephosphorylation cascades to rapidly and reversibly transduce their signals from their plasma membrane receptors to the cytoplasm and the nucleus. 3-Phosphoinositide-dependent protein kinase-1 (PDK1) 3 was originally identified as an upstream kinase for protein kinase B (PKB/Akt) (1) and is recognized as a master protein kinase for regulating in many cell-signaling pathways (2-5).Targets of PDK1 include many of the AGC family of protein kinases, including protein kinase B (PKB/Akt), p70 ribosomal protein S6 kinase (p70 S6K ), cyclic AMP-dependent protein kinase, protein kinase C, serum and glucocorticoid-inducible kinase (SGK), p90 ribosomal protein S6 kinase (RSK), and p21-activated kinase-1 (PAK1) (4). However, the generation of PDK1-ablated or PDK1-hypomorphic (ϳ10% of PDK1 expression) mice revealed that most of the PDK1 substrates identified in vitro were not physiological targets for PDK1 in vivo, with the exception of PKB, p70 S6K , and RSK (6, 7). PDK1(Ϫ/Ϫ) mice die at embryonic day 9.5 with multiple abnormalities, whereas hypomorphic PDK1 mice are viable (6). Nevertheless, these mice are 40 -50% smaller than control animals due to small cell size, but not cell number, providing genetic evidence that PDK1 is essential for mouse embryonic development and regulates cell size (6).PDK1 possesses an N-terminal kinase domain and a C-terminal pleckstrin homology domain (8, 9). Phosphorylation of PKB by PDK1 is dependent upon prior activation by phosphoinositide 3-kinase a...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.