Within the mitochondrial reticulum of skeletal muscle, the I-Band segments (IBS) traverse the cell and form a contiguous matrix with the mitochondrial segments at the periphery (PS) of the cell. A tight electrical coupling via the matrix between the PS and IBS has been demonstrated. In addition, oxidative phosphorylation complexes that generate the proton motive force (PMF) are preferentially located in the PS, while Complex V, which utilizes the PMF, is primarily located along the IBS. This has led to the hypothesis that PS can support the production of ATP in the IBS by maintaining the potential energy available to produce ATP deep in the muscle cell via conduction of the PMF down the IBS. However, the mechanism of transmitting the PMF down the IBS is poorly understood. This theoretical study was undertaken to establish the physical limits governing IBS conduction as well as potential mechanisms for balancing the protons entering the matrix along the IBS with the ejection of protons in the PS. The IBS was modeled as a 300 nm diameter, water-filled tube, with an insulated circumferential wall. Two mechanisms were considered to drive ion transport along the IBS: the electrical potential and/or concentration gradients between the PS to the end of the IBS. The magnitude of the flux was estimated from the maximum ATP production rate for skeletal muscle. The major transport ions in consideration were H+, Na+ and K+ using diffusion coefficients from the literature. The simulations were run using COMSOL Multi-physics simulator. These simulations suggest conduction along the IBS via H+ alone is unlikely requiring un-physiological gradients, while Na+ or K+ could carry the current with minor gradients in concentration or electrical potential along the IBS. The majority of conduction down the IBS is likely dependent on these abundant ions; however, this presents a question as to how H+ is recycled from the matrix of the IBS to the PS for active extrusion. We propose that the abundant cation-proton antiporter in skeletal muscle mitochondria operates in opposite directions in the IBS and PS to permit local recycling of H+ at each site driven by cooperative gradients in H+ and Na+/K+ which favor H+ entry in the PS and H+ efflux in the IBS.
Hybrid nanostructured materials can exhibit different properties than their constituent components, and can enable decoupled engineering of energy conversion and transport functions. Novel means of building hybrid assemblies of crystalline C60 and carbon nanotubes (CNTs) are presented, wherein aligned CNT films direct the crystallization and orientation of C60 rods from solution. In these hybrid films, the C60 rods are oriented parallel to the direction of the CNTs throughout the thickness of the film. High‐resolution imaging shows that the crystals incorporate CNTs during growth, yet grazing‐incidence X‐ray diffraction (GIXD) shows that the crystal structure of the C60 rods is not perturbed by the CNTs. Growth kinetics of the C60 rods are enhanced 8‐fold on CNTs compared to bare Si, emphasizing the importance of the aligned, porous morphology of the CNT films as well as the selective surface interactions between C60 and CNTs. Finally, it is shown how hybrid C60–CNT films can be integrated electrically and employed as UV detectors with a high photoconductive gain and a responsivity of 105 A W−1 at low biases (± 0.5 V). The finding that CNTs can induce rapid, directional crystallization of molecules from solution may have broader implications to the science and applications of crystal growth, such as for inorganic nanocrystals, proteins, and synthetic polymers.
The artery wall is equipped with a water permeation barrier that allows blood to flow at high pressure without significant water leak. The precise location of this barrier is unknown despite its importance in vascular function and its contribution to many vascular complications when it is compromised. Herein we map the water permeability in intact arteries, using coherent anti-Stokes Raman scattering (CARS) microscopy and isotopic perfusion experiments. Generation of the CARS signal is optimized for water imaging with broadband excitation. We identify the water permeation barrier as the endothelial basolateral membrane and show that the apical membrane is highly permeable. This is confirmed by the distribution of the AQP1 water channel within endothelial membranes. These results indicate that arterial pressure equilibrates within the endothelium and is transmitted to the supporting basement membrane and internal elastic lamina macromolecules with minimal deformation of the sensitive endothelial cell. Disruption of this pressure transmission could contribute to endothelial cell dysfunction in various pathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.