We studied the outburst evolution and timing properties of the recently discovered X-ray transient MAXI J1348−630 as observed with NICER. We produced the fundamental diagrams commonly used to trace the spectral evolution, and power density spectra to study the fast X-ray variability. The main outburst evolution of MAXI J1348−630 is similar to that commonly observed in black hole transients. The source evolved from the hard state, through hard- and soft-intermediate states, into the soft state in the outburst rise, and back to the hard state in reverse during the outburst decay. At the end of the outburst, MAXI J1348−630 underwent two reflares with peak fluxes ∼1 and ∼2 orders of magnitude fainter than the main outburst, respectively. During the reflares, the source remained in the hard state only, without undergoing any state transitions, which is similar to the so-called “failed outbursts”. Different types of quasi-periodic oscillations (QPOs) are observed at different phases of the outburst. Based on our spectral-timing results, we conclude that MAXI J1348−630 is a black hole candidate.
The black hole candidate and X-ray binary MAXI J1535−571 was discovered in 2017 September. During the decay of its discovery outburst, and before returning to quiescence, the source underwent at least four reflaring events, with peak luminosities of ∼1035–36 erg s−1 (d/4.1 kpc)2. To investigate the nature of these flares, we analysed a sample of NICER (Neutron star Interior Composition Explorer) observations taken with almost daily cadence. In this work, we present the detailed spectral and timing analysis of the evolution of the four reflares. The higher sensitivity of NICER at lower energies, in comparison with other X-ray detectors, allowed us to constrain the disc component of the spectrum at ∼0.5 keV. We found that during each reflare the source appears to trace out a q-shaped track in the hardness–intensity diagram similar to those observed in black hole binaries during full outbursts. MAXI J1535−571 transits between the hard state (valleys) and softer states (peaks) during these flares. Moreover, the Comptonized component is undetected at the peak of the first reflare, while the disc component is undetected during the valleys. Assuming the most likely distance of 4.1 kpc, we find that the hard-to-soft transitions take place at the lowest luminosities ever observed in a black hole transient, while the soft-to-hard transitions occur at some of the lowest luminosities ever reported for such systems.
We present a systematic spectral-timing analysis of a fast appearance/disappearance of a type-B quasi-periodic oscillation (QPO), observed in four NICER observations of MAXI J1348−630. By comparing the spectra of the period with and without the type-B QPO, we found that the main difference appears at energy bands above ∼2 keV, suggesting that the QPO emission is dominated by the hard Comptonised component. During the transition, a change in the relative contribution of the disk and Comptonised emission was observed. The disk flux decreased while the Comptonised flux increased from non-QPO to type-B QPO. However, the total flux did not change too much in the NICER band. Our results reveal that the type-B QPO is associated with a redistribution of accretion power between the disk and Comptonised emission. When the type-B QPO appears, more accretion power is dissipated into the Comptonised region than in the disk. Our spectral fits give a hint that the increased Comptonised emission may come from an additional component that is related to the base of the jet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.