Abstract. Developing Cyber-Physical Systems requires methods and tools to support simulation and verification of hybrid (both continuous and discrete) models. The Acumen modeling and simulation language is an open source testbed for exploring the design space of what rigorousbut-practical next-generation tools can deliver to developers of CyberPhysical Systems. Like verification tools, a design goal for Acumen is to provide rigorous results. Like simulation tools, it aims to be intuitive, practical, and scalable. However, it is far from evident whether these two goals can be achieved simultaneously. This paper explains the primary design goals for Acumen, the core challenges that must be addressed in order to achieve these goals, the "agile research method" taken by the project, the steps taken to realize these goals, the key lessons learned, and the emerging language design.
Effective and creative Cyber-Physical Systems (CPS) development requires expertise in disparate fields that have traditionally been taught in several distinct disciplines. At the same time, students seeking a CPS education generally come from diverse educational backgrounds. In this paper, we report on our recent experience of developing and teaching a course on CPS. The course addresses the following three questions: What are the core elements of CPS? How should these core concepts be integrated in the CPS design process? What types of modeling tools can assist in the design of Cyber-Physical Systems? Our experience with the first four offerings of the course has been positive overall. We also discuss the lessons we learned from some issues that were not handled well. All material including lecture notes and software used for the course are openly available online.
ZL is a C++-compatible language in which high-level constructs, such as classes, are defined using macros over a C-like core language. This approach is similar in spirit to Scheme and makes many parts of the language easily customizable. For example, since the class construct can be defined using macros, a programmer can have complete control over the memory layout of objects. Using this capability, a programmer can mitigate certain problems in software evolution such as fragile ABIs (Application Binary Interfaces) due to software changes and incompatible ABIs due to compiler changes.ZL's parser and macro expander is similar to that of Scheme. Unlike Scheme, however, ZL must deal with C's richer syntax. Specifically, support for context-sensitive parsing and multiple syntactic categories (expressions, statements, types, etc.) leads to novel strategies for parsing and macro expansion.In this dissertation we describe ZL's approach to parsing and macros. We demonstrate how to use ZL to avoid problems with ABI instability through techniques such as fixing the size of class instances and controlling the layout of virtual method dispatch tables. We also demonstrate how to avoid problems with ABI incompatibility by implementing another compiler's ABI.Future work includes a more complete implementation of C++ and elevating the approach so that it is driven by a declarative ABI specification language.ii
A whisker-like device has been designed and tested that simultaneously measures the speed and the direction of a flow in which it protrudes. The device consists of a thin cylindrical probe longer than the thickness of the local boundary layer whose aerodynamic drag produces a moment at its base which is measured by a solid-state torque transducer. With proper calibration, the orthogonal components of the moment can be used to measure the speed and the direction of the flow. Measurements have been performed in a wind tunnel to validate the design at flow velocities ranging from Mach 0.15 to Mach 0.87 and for flow angles relative to the probe ranging from -88° to +88°. The results obtained indicate that the aero-whisker is capable to accurately measure the Mach number and direction of the flow with potential for further optimization for aircraft applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.