Author Contributions JT, KBT, JRA, JJM, KMM, RDG, CH, and JDM designed and synthesized compounds. ERA and LRT conducted mechanism of action studies featured in Figure 4,5 and 7. JS and JGS obtained the biochemical and cell-based data in Table 1-3. JLS conducted western blot and caspase assay in Figure 6. BZ, TAR, and WGP performed X-ray crystallography studies of complexes. JK, MI, andRJC conducted CTOSs assay in Figure 8. WJM GMS helped design experiments. WPT, SRS, TL, and SWF design and directed experiments and helped write the paper. All authors have given approval to the final version of the manuscript. Supporting Information. X-ray refinement statistics, MLL1 HMT assay details and titration curves of compound 16. This material is available free of charge via the internet at http://pubs.acs.org. Accession Codes. Atom coordinates and structure factors for WDR5-ligand complexes can be accessed in the PDB via the following accession codes: Compound 13/WDR5 complex (6UFX), Compound 16/WDR5 complex (6UCS). Authors will release the atomic coordinates upon article publication.
A benzaldehyde-mediated photoredox reaction for the α-heteroarylation of amides (α to nitrogen) and ethers through cross-dehydrogenative coupling (CDC).
WD repeat domain 5 (WDR5) is a core scaffolding component of many multiprotein complexes that perform a variety of critical chromatin-centric processes in the nucleus. WDR5 is a component of the mixed lineage leukemia MLL/SET complex and localizes MYC to chromatin at tumor-critical target genes. As a part of these complexes, WDR5 plays a role in sustaining oncogenesis in a variety of human cancers that are often associated with poor prognoses. Thus, WDR5 has been recognized as an attractive therapeutic target for treating both solid and hematological tumors. Previously, small-molecule inhibitors of the WDR5-interaction (WIN) site and WDR5 degraders have demonstrated robust in vitro cellular efficacy in cancer cell lines and established the therapeutic potential of WDR5. However, these agents have not demonstrated significant in vivo efficacy at pharmacologically relevant doses by oral administration in animal disease models. We have discovered WDR5 WIN-site inhibitors that feature bicyclic heteroaryl P
7
units through structure-based design and address the limitations of our previous series of small-molecule inhibitors. Importantly, our lead compounds exhibit enhanced on-target potency, excellent oral pharmacokinetic (PK) profiles, and potent dose-dependent in vivo efficacy in a mouse MV4:11 subcutaneous xenograft model by oral dosing. Furthermore, these in vivo probes show excellent tolerability under a repeated high-dose regimen in rodents to demonstrate the safety of the WDR5 WIN-site inhibition mechanism. Collectively, our results provide strong support for WDR5 WIN-site inhibitors to be utilized as potential anticancer therapeutics.
WD
repeat domain 5 (WDR5) is a nuclear scaffolding protein that
forms many biologically important multiprotein complexes. The WIN
site of WDR5 represents a promising pharmacological target in a variety
of human cancers. Here, we describe the optimization of our initial
WDR5 WIN-site inhibitor using a structure-guided pharmacophore-based
convergent strategy to improve its druglike properties and pharmacokinetic
profile. The core of the previous lead remained constant while a focused
SAR effort on the three pharmacophore units was combined to generate
a new in vivo lead series. Importantly, this new
series of compounds has picomolar binding affinity, improved cellular
antiproliferative activity and selectivity, and increased kinetic
aqueous solubility. They also exhibit a desirable oral pharmacokinetic
profile with manageable intravenous clearance and high oral bioavailability.
Thus, these new leads are useful probes toward studying the effects
of WDR5 inhibition.
A small-molecule inhibitor with a 1,4-dibenzoylpiperazine scaffold was designed to match the critical binding elements in the β-catenin/B-cell lymphoma 9 (BCL9) protein−protein interaction interface. Inhibitor optimization led to a potent inhibitor that can disrupt the β-catenin/BCL9 interaction and exhibit 98-fold selectivity over the β-catenin/cadherin interaction. The binding mode of new inhibitors was characterized by structure−activity relationships and site-directed mutagenesis studies. Cell-based studies demonstrated that this series of inhibitors can selectively suppress canonical Wnt signaling and inhibit growth of Wnt/β-catenin-dependent cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.