The growth of high-quality single crystals of graphene by chemical vapor deposition on copper (Cu) has not always achieved control over domain size and morphology, and the results vary from lab to lab under presumably similar growth conditions. We discovered that oxygen on the Cu surface substantially decreased the graphene nucleation density by passivating Cu surface active sites. Control of surface oxygen enabled repeatable growth of centimeter-scale single-crystal graphene domains. Oxygen also accelerated graphene domain growth and shifted the growth kinetics from edge-attachment-limited to diffusion-limited. Correspondingly, the compact graphene domain shapes became dendritic. The electrical quality of the graphene films was equivalent to mechanically exfoliated graphene, in spite of being grown in the presence of oxygen.
By adapting the concept of epitaxy to two-dimensional space, we show the growth of a single-atomic-layer, in-plane heterostructure of a prototypical material system--graphene and hexagonal boron nitride (h-BN). Monolayer crystalline h-BN grew from fresh edges of monolayer graphene with atomic lattice coherence, forming an abrupt one-dimensional interface, or boundary. More important, the h-BN lattice orientation is solely determined by the graphene, forgoing configurations favored by the supporting copper substrate.
The reflectivity of low energy electrons from graphene on copper substrates is studied both experimentally and theoretically. Well-known oscillations in the reflectivity of electrons with energies 0 -8 eV above the vacuum level are observed in the experiment. These oscillations are reproduced in theory, based on a first-principles density functional description of interlayer states forming for various thicknesses of multilayer graphene. It is demonstrated that n layers of graphene produce a regular series of 1 n minima in the reflectance spectra, together with a possible additional minimum associated with an interlayer state forming between the graphene and the substrate. Both (111) and (001) orientations of the copper substrates are studied. Similarities in their reflectivity spectra arise from the interlayer states, whereas differences are found because of the different Cu band structures along those orientations. Results for graphene on other substrates, including Pt(111) and Ir(111), are also discussed.
We study how the (100) surface of magnetite undergoes oxidation by monitoring its morphology during exposure to oxygen at ~650 °C. Low-energy electron microscopy reveals that magnetite's surface steps advance continuously. This growth of Fe3O4 crystal occurs by the formation of bulk Fe vacancies. Using Raman spectroscopy, we identify the sinks for these vacancies, inclusions of α-Fe2O3 (hematite). Since the surface remains magnetite during oxidation, it continues to dissociate oxygen readily. At steady state, over one-quarter of impinging oxygen molecules undergo dissociative adsorption and eventual incorporation into magnetite. From the independence of growth rate on local step density, we deduce that the first step of oxidation, dissociative oxygen adsorption, occurs uniformly over magnetite's terraces, not preferentially at its surface steps. Since we directly observe new magnetite forming when it incorporates oxygen, we suggest that catalytic redox cycles on magnetite involve growing and etching crystal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.